Calculated estimation technique for audibility boundaries of propeller unmanned aerial vehicles

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


DOI: 10.34759/vst-2021-2-20-36

Аuthors

Moshkov P. A.1*, Samokhin V. F.2**

1. Yakovlev Corporation Regional Aircraft Branch, 26, Leninskaya Sloboda str., Moscow, 115280, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: moshkov89@bk.ru, p_moshkov@ssj.irkut.com
**e-mail: samohin_vf@mail.ru

Abstract

The problem of community noise of propeller-driven unmanned aerial vehicles (UAVs) should be considered separately for civil and special-purpose vehicles.

Currently, there are no international standards regulating maximum permissible community noise levels of civil propeller-driven unmanned aerial vehicles (UAV), and low-noise levels are primarily a competitive advantage. The UAVs noise levels normalizing by the analogy with light propeller aircraft is possible in the future.

For the special-purpose propeller UAVs, the problem of acoustic signature is important. It is necessary to ensure the domestic aircraft invisibility when flying along a given trajectory, and to be able to acoustically localize the enemy’s UAVs identifying herewith the UAV type and determining the trajectory of its movement in real time.

In the framework of the propeller UAVs acoustic visibility estimation and while developing standards on the community noise the article suggests employing two units of measure, namely the A-weighted overall sound power level and the overall sound pressure level in dBA. The A-weighted overall total sound power level does not depend on the distance and cannot characterize the acoustic signature, which depends on the distance of the object from the radiation detection point and environmental conditions. At the same time, one may proceed from the spectrum of the acoustic power of the sound source, knowing its direction diagram or assuming it spherical, to the UAV noise level evaluation in the far acoustic field at the given atmospheric conditions and distance. Besides, the total level of acoustic power in dBA can be implemented for the comparative assessment of the degree of acoustic signature of various UAVs of the same class.

A technique for assessing the acoustic signature boundaries of the UAV is proposed. The following items became components of the technique: the noise models of the main sources or experimental data on the UAVs noise, data on the ambient noise, criteria for acoustic signature of various types of UAVs, as well as the software for assessing the aircraft community noise.

Keywords:

unmanned aerial vehicle, community noise, audibility, acoustic signature

References

  1. Evdokimov I.E., Filippov G.S., Yakovlev A.A. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2012, no. 6, pp. 223–227.
  2. Nikolaenko V.S., Filippov G.S., Jashenko B.Yu. The problem of reducing the thermal signature of an aircraft engine. Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 109-114.
  3. Zaitsev A.V., Amozov E.V., Mitrofanov D.G. et al. Patent RU 136192 U1, 27.12.2013.
  4. Razin’kov S.N., Baranov S.O., Razin’kova O.E. Radiotekhnika, 2020, vol. 84, no. 5(10), pp. 43–52. DOI: 10.18127/j00338486-202005(10)-05
  5. Sapronov D.I., Kamenskii I.V. Elektrosvyaz’, 2019, no. 8, pp. 34–42.
  6. Moshkov P.A., Ostrikov N.N., Samokhin V.F. Materialy III Vserossiiskoi akusticheskoi konferentsii (21-25 September 2020; Saint Petersburg) “Trudy Vserossiiskoi akusticheskoi konferentsii”, St. Petersburg, Polytech-Press, 2020, pp. 582–588.
  7. Rudenko O.V., Gusev V.A. Akusticheskii zhurnal, 2020, vol. 66, no. 6, pp. 599–609. DOI: 10.31857/S032079192006009X
  8. Kartashov V.M., Oleynikov V.N., Sheyko S.A., Babkin S.I., Korytsev I.V., Zubkov O.V. Peculiarities of small unmanned aerial vehicles detection and recognition. Telecommunications and Radio Engineering, 2019, vol. 78, no. 9, pp. 771–781. DOI: 10.1615/TelecomRadEng. v78.i9.30
  9. Afanas’eva E.M., Pon’kin V.A., Semenyakin A.Yu. Patent RU 2327099 C1, 20.06.2008.
  10. Kartashov V.M., Oleinikov V.N., Sheiko S.A. et al. Radiotekhnika, 2018, no. 195, pp. 235–243.
  11. Guo J., Ahmad I., Chang K. Classification, positioning, and tracking of drones by HMM using acoustic circular microphone array beamforming. EURASIP Journal on Wireless Communications and Networking, 2020, no. 9, 19 p. DOI: 10.1186/s13638-019-1632-9
  12. Yamada T., Itoyama K., Nishida K., Nakadai K. 3D Sound Source Tracking for Drones Using Direction Likelihood Integration. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 7 p.
  13. Insausti X., Hogstad B.O., Pätzold M. Modelling and Simulation of Ego-Noise of Unmanned Aerial Vehicles. 2020 IEEE 91st Vehicular Technology Conference – VTC2020-Spring (25-28 May 2020; Antwerp, Belgium, Belgium). DOI: 10.1109/VTC2020-Spring48590.2020. 9128572
  14. Qayyum, A., Hassan, K., Anika A. et al. DOANet: a deep dilated convolutional neural network approach for search and rescue with drone-embedded sound source localization. Eurasip Journal on audio, speech and music processing, 2020, no. 16. DOI: 10.1186/s13636-020-00184-2
  15. Cabrera-Ponce A.A., Martinez-Carranza J., Rascon C. Detection of nearby UAVs using a multi-microphone array on board a UAV. International Journal of Micro Air Vehicles, 2020, vol.12. DOI: 10.1177/1756829320925748
  16. Furukawa K., Okutani K., Nagira K., Otsuka T., Itoyama K., Nakadai K., Okuno H.G. Noise correlation matrix estimation for improving sound source localization by multirotor UAV. IEEE/RSJ International Conference on Intelligent Robots and Systems. (3-7 November 2013; Tokyo, Japan), pp. 3943–3948. DOI: 10.1109/IROS.2013.6696920
  17. Blanchard T., Thomas J.H. UAV’s localization from a microphone array by exploiting the harmonic structure of the sound produced. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 10 p.
  18. Go Y., Choi J.S. Signal-to-Noise Ratio Enhancement Method for Improving Sound Source Detection of Drone-mounted Phased Microphone Array. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 8 p.
  19. Borzov A.B., Likhoedenko K.P., Pavlov G.L. et al. Patent RU 2513719 C1, 20.04.2014.
  20. Blass M., Graf F. A Real-Time System for Joint Acoustic Detection and Localization of UAVs. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 18 p.
  21. Moshkov P.A., Samokhin V.F. Experimental determination of piston engine share in the light propeller aircraft power plant total noise. Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 50-61.
  22. Moshkov P.A., Samokhin V.F. Noise and acoustic signature reduction methods for unmanned aerial vehicles with engine-propeller power plant. Aerospace MAI Journal, 2017, vol. 24, no. 1, pp. 38-48.
  23. Moshkov P.A., Samokhin V.F. Problems of light propeller-driven airplane design with regard to community noise requirements. Aerospace MAI Journal, 2021, vol. 28, no. 1, pp. 19-34. DOI: 10.34759/vst-2021-1-19-34
  24. Belyaev I.V., Valiev A.V., Moshkov P.A., Ostrikov N.N. Studying the PTERO-G0 unmanned flying vehicles acoustic characteristics in AK-2 unechoic chamber. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 52-62.
  25. Moshkov P., Ostrikov N., Samokhin V., Valiev A. Study of Ptero-G0 UAV Noise with Level Flight Conditions. 25th AIAA/CEAS Aeroacoustics Conference (20-23 May 2019; Delft, The Netherlands). AIAA 2019-2514. DOI: 10.2514/6.2019-2514
  26. Samokhin V.F., Ostroukhov S.P., Moshkov P.A. Trudy MAI, 2013, no. 70. URL: http://trudymai.ru/eng/published.php?ID=44459
  27. Pinel Lamotte L., Baron V., Bouley S. UAV detection from acoustic signature: requirements and state of the art. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 13 p.
  28. EDIDP-CUAS-2020 (European Defence Industrial Development Programme), https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topicdetails/edi...
  29. Wieland M., Liebsch R., Vyshnevskyy M. Noise requirements of Unmanned Aircraft due to European Regulation 2019/945. QUIET DRONES: International e-Symposium on UAV/UAS Noise (19-21 October 2020; FNTP, Paris, France), 8 p.
  30. Commission delegated regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems (OJ L 152, p.1); amended by Commission delegated regulation (EU) 2020/1058 of 27 April 2020.
  31. Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft (OJ L 152, p.45); amended by Commission implementing regulation (EU) 2020/639 of 12 May 2020 and Commission implementing regulation (EU) 2020/746 of 4 June 2020.
  32. Akustika. Opredelenie urovnei zvukovoi moshchnosti i zvukovoi energii istochnikov shuma po zvukovomu davleniyu. Tekhnicheskii metod v sushchestvenno svobodnom zvukovom pole nad zvukootrazhayushchei ploskost’yu. GOST R ISO 3744-2013 (Acoustics. Determination of sound power levels and sound energy levels of noise sources using sound pressure. Engineering method for an essentially free field over a reflecting plane, State Standard R ISO 3744-2013), Moscow, Standartinform, 2014, 109 p.
  33. Moshkov P.A. Prognozirovanie i snizhenie shuma na mestnosti legkikh vintovykh samoletov (Prediction and reduction of light propeller aircraft community noise), Doctor’s thesis, Moscow, MAI, 2015, 143 p.
  34. Moshkov P.A., Samokhin V.F., Yakovlev A.A. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2018, no. 2, pp. 3–9.
  35. Kazhan V.G., Moshkov P.A., Samokhin V.F. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2015, no. 7, pp. 146-170. DOI: 10.7463/0715.0782827
  36. Dmitriev V.G., Samokhin V.F. Uchenye zapiski TsAGI, 2014, vol. 45, no. 2, pp. 137–157.
  37. Moshkov P.A., Samokhin V.F. Uchenye zapiski TsAGI, 2016, vol. 47, no. 6, pp. 55–60.
  38. Moshkov P.A., Samokhin V.F. Propeller-driven light aircraft power plant noise Integral model. Aerospace MAI Journal, 2016, vol. 23, no. 4, pp. 36-44.
  39. Dmitriev V.G., Samokhin V.F., Maslova N.P. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2019, no. 8, pp. 3–21.
  40. Ostrikov N.N., Denisov S.L. Mean flow effect on shielding of noncompact aviation noise sources. 22nd AIAA/CEAS Aeroacoustics Conference (30 May — 1 June 2016; Lyon, France). AIAA 2016-3014. DOI: 10.2514/6.2016-3014
  41. Moshkov P.A. Vestnik MGTU im. N.E. Baumana. Estestvennye nauki, 2020, no. 2(89), pp. 85–98. DOI: 10.18698/1812-3368-2020-2-85-98
  42. Vlasov E.V., Samokhin V.F. Akusticheskii zhurnal, 1977, vol. 23, no. 4, pp. 550–556.
  43. Molin N. Airframe noise modeling and prediction. CEAS Aeronautical Journal, 2019, vol. 10, no. 1. pp. 11-29. DOI: 10.1007/s13272-019-00375-4
  44. Afanas’ev V.A., Degtyarev G.L., Meshchanov A.S. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2017, no. 3, pp. 29–37.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI