Numerical and experimental studies on the over-the-wing-engine configurations aerodynamics

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


DOI: 10.34759/vst-2021-2-37-51

Аuthors

Bolsunovskii A. L.*, Buzoverya N. P., Bragin N. N., Gerasimov S. V., Pushchin N. A., Chernyshev I. L.**

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: bolsun@progtech.ru
**e-mail: ivan.chernyshev@tsagi.ru

Abstract

Environmental requirements, such as limits on community noise and emissions, will play an increasingly important role in the future of civil aviation. The possibilities of noise reduction in state-of-the-art layouts are limited, thus, it may be necessary to switch to radically new schemes to meet the goals declared by NASA, ACARE, the Ministry of Industry and Trade of Russia and other organizations for the next generation of aircraft.
Engine noise is one of the main factors in the overall aircraft noise. Although the current trend to increase the bypass ratio turbojet leads itself to the noise reduction, the possibility of placing large engines under the wing is limited. The upper position of the engines may help to eliminate this problem and additionally reduce the noise on the ground due to the shielding effect. Besides, the engines diameter increasing does not lead to the chassis struts elongation, i.e. there is a possibility of installing engines with ultra-high bypass ratio. Air intakes are better protected from foreign objects, especially on runways of poor quality. There is no gap in the slat spanwise, as in the layouts with engines under the wing. The jets of the engines do not fall on the flaps. The disadvantages include a significant risk of adverse aerodynamic interference, especially at transonic speeds, and increase in the cabin noise, which may require installation of additional sound-absorbing structures. Moreover, the thrust of the engines creates an undesirable negative dive moment at takeoff and in cruising flight. Many questions arise concerning rational design of the pylon-wing-nacelle assembly and its aero-elastic characteristics. Finally, the engine maintenance becomes noticeably complicated.
Intensive research on «quiet» layouts has been initiated in the US and Europe to meet the stringent environmental requirements of NASA and ACARE for the decades to come. TsAGI also conducts systematic research in this direction, trying to make allowances for the development of necessary technologies in various disciplines, especially in aerodynamics and power plants, since aerodynamics is the main bottleneck hindering introduction of the top-mounted engine layouts. This problem solution with a positive result is possible only with a powerful set of aerodynamic design tools. The set should include a detailed direct analysis method that accounts for all geometric features, an optimization procedure, and a reverse method, allowing create the aircraft surface element according to a given pressure distribution. The authors use in their practice the original version of the residual correction method, in which the upper level is represented by the RANS method, and the inverse method based on the full potential method is used as a corrector.
The article discusses the aerodynamic design features of various aircraft layouts with the engines location above the wing. In general case, their aerodynamics are more complex due to the possibility of adverse aerodynamic interference manifestation caused by the increased speeds over the wing. Thus, it is necessary to search for such configurations in which this risk is minimal, or even there is a chance of positive interference. Several aerodynamic models were designed, manufactured, and tested in TsAGI’s large transonic tubes. These included:
— the regional aircraft layout with natural flow-around laminarization of the wing of a small sweep (χ¼ = 15°)  with the cruising Mach number of M = 0.78. Aerodynamic tests in the T-128 WT (Wing Tunnel) demonstrated satisfactory transonic aerodynamic characteristics, including the possibility of obtaining extended laminar sections on the wing consoles, as well as excellent load-bearing characteristics at low speeds;
— the layout of business aircraft with a drop shape of the fuselage called a «tadpole», with a maximum cruise Mach number of M = 0.82 and a small wing sweep (χ¼ = 6°), with a normal distribution of the relative thickness (`с = 14–10% at the root and at the end respectively). Tests in the T-128 WT fully confirmed the speed properties of the layout;
— the layout of the «flying wing» with the engine nacelles located above the wing center section, designed with account for the unfavorable aerodynamic interference of the wing-pylon-nacelle assembly.

Keywords:

aerodynamic design, over-the-wing-engine configuration, experimental studies

References

  1. Brodersen O., Taupin K., Maury E. et al. Aerodynamic investigations in the European Project ROSAS (Research on Silent Aircraft Concepts). 35th AIAA Fluid Dynamics Conference and Exhibit (06-09 June 2005, Toronto, Ontario, Canada). AIAA 2005-4891. DOI: 10.2514/6.2005-4891

  2. Hileman J.I., Spakovszky Z.S., Drela M., Sargeant M.A. Airframe design for a «Silent Aircraft». 45th AIAA Aerospace Sciences Meeting and Exhibit (08-11 January 2007; Reno, Nevada). DOI:10.2514/6.2007-453

  3. Powell S., So2bester A., Joseph P. Fan broadband noise shielding for over- wing engines. Journal of Sound and Vibration, 2012, vol. 331, no. 23, pp. 5054-5068. DOI: 10.1016/j.jsv.2012.06.012

  4. Warwick Gr. Location, location. Aviation Week & Space Technology, Aug. 5/12, 2013.

  5. Warwick Gr. Lockheed Martin refines hybrid wing-body airlifter concept. Aviation Week & Space Technology. February 17, 2014. URL: https://aviationweek.com/defense-space/lockheed-martin-refines-hybrid-wing-body-airlifter-concept

  6. Frotta J. NACRE an overview: towards a silent-by-design aircraft? 15th AIAA/CEAS Aeroacoustics Conference (12-13 May 2009, Miami, Florida, USA).

  7. Sasaki D., Nakahashi K. Aerodynamic optimization of an over-the-wing-nacelle-mount configuration. Modelling and Simulation in Engineering, 2011. DOI: 10.1155/2011/293078

  8. Thomas R.H., Burley C.L., Nickol C.L. Assessment of the noise reduction potential of advanced subsonic transport concepts for the NASA’s Environmentally Responsible Aviation Project. 54th AIAA Aerospace Sciences Meeting (4-8 January 2016; San Diego, California, USA). DOI: 10.2514/6.2016-0863

  9. Bolsunovskii A.L., Bragin N.N., Buzoverya N.P. et al. Aerodynamic studies on low-noise aircraft with upper engine installation. 29th Congress of the International Council of the Aeronautical Sciences (07-12 September 2014; St. Petersburg). URL: http://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0389_paper.pdf

  10. Bolsunovskii A.L., Buzoverya N.P., Chernyshev I.L., Cherny K.I., Pushchin N.A. The numerical and experimental studies on the over-wing-engine configurations aerodynamics. 8th European Conference for Aeronautics and Space Sciences (01-04 July 2019; Madrid, Spain). DOI: 10.13009/EUCASS2019-329

  11. Chandrasekharan R.M., Murphy W.R. et al. Computational aerodynamic design of the Gulfstream IV wing. Journal of Aircraft, 1985, vol. 22, no. 9, pp. 797-801. AIAA −85-0427. DOI: 10.2514/3.45204

  12. Bolsunovskii A.L., Buzoverya N.P., Karas O.V., Skomorokhov S.I. An experience in aerodynamic design of transport aircraft. 28th International Congress of the Aeronautical Sciences ICAS 2012. URL: https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/479.PDF

  13. Bolsunovskii A.L., Buzoverya N.P., Pushchin N.A. Uchenye zapiski TsAGI, 2020, vol. 51, no. 1, pp. 3-13.

  14. Savoni L., Rudnik R. Pylon design for a short range transport aircraft with over-the-wing mounted UHBPR engines. AIAA Aerospace Sciences Meeting. DOI:10.2514/6.2018-0011

  15. Crouch J.D., Sutano M.I., Witkowski D.P. et al. Assessment of the National Transonic Facility for Laminar Flow Testing. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (04-07 January 2010; Orlando, Florida). DOI: 10.2514/6.2010-1302

  16. Perraud J., Schrauf G., Archambaud I. et al. Transonic High Reynolds Number Transition Experiments in the ETW Cryogenic Wind Tunnel. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (04-07 January 2010; Orlando, Florida). DOI: 10.2514/6.2010-1300

  17. Bolsunovskii A.L., Buzoverya N.P., Chernavskikh Yu.N. et al. Study on a concept of a business jet with high passenger comfort. 4th European Conference for Aeronautics and Space Sciences EUCASS 2011.

  18. Fujino M., Kawamura Y. Wave-drag characteristics of an over-the-wing nacelle business-jet configuration. Journal of Aircraft, 2003, vol. 40, no. 6, pp. 1177–1184. DOI: 10.2514/2.7207

  19. Nickol C.L., Haller W.J. Assessment of the performance potential of advanced subsonic transport concepts for the NASA’s Environmentally Responsible Aviation Project. 54th AIAA Aerospace Sciences Meeting (4-8 January 2016; San Diego, California, USA). DOI: 10.2514/6.2016-1030

  20. Bolsunovskii A.L., Buzoverya N.P., Chernyshev I.L., Gurevich B.I., Tsyganov A.P. Arrangement and aerodynamic studies for long-range aircraft in «flying wing» layout. 29th Congress of the International Council of the Aeronautical Sciences (07-12 September 2014; St. Petersburg). ICAS 2014-0388. URL: https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0388_paper.pdf

  21. Anisimov K.S., Kazhan E.V., Kursakov I.A., Lysenkov A.V., Podaruev V.Y., Savel’ev A.A. Aircraft layout design employing high-precision methods of computational aerodynamics and optimization. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 7-19.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI