An approach to the probability determining of the specified flight performance achieving, and account for risk factors while an aircraft appearance forming

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2021-2-85-95

Аuthors

Klyagin V. A.*, Laushin D. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kliagin@mail.ru
**e-mail: laushin.d@yandex.ru

Abstract

When considering practicality of works unfurling on one or another project implementation, the possibility of this project realization should be assessed mandatory along with its financial or other feasibility assessing.

The project realizability is understood as the capability of solving the necessary set of scientific and technical, planning and design, production and technological and organizational tasks to fulfill due-by-date the full scope of works, ensuring creation of a new or modernized aviation complex (AC).

A great variety of factors affects the AC realizability. The following basic factors can be outlined among them:

— Technical realizability;

— Scientific and technical capabilities of the design bureau (organizational and technical realizability of the project);

— Production and technological capabilities;

— Financial feasibility.

The realizability assessment of science-intensive projects is performed on the based on assessments of the main types of risks present while the projects implementation. Risk levels of a program implementation are the estimated value of the factors of various nature impact on the end result of the program in terms of the target indicators achieving. The main target indicator for the program implementation is of the selected version of the AС timely creation, meeting the requirements of the tactical and technical assignment (TTA).

The state-of-the-art techniques application for the complex comparison of the aircraft should be performed in conjunction with the aircraft flight performance (AP) realizability. The flight performance realizability is understood as the probability of achieving the flight performance characteristics declared in the design specifications. To determine the probability of the AP achieving, knowledge of a distribution law for each characteristic is necessary, and these laws are affected herewith by the distribution of the input parameters. The input parameters distribution can be obtained based on statistical data, mathematical modeling, as well as by the expert assessments method. As far as the highlighted risk factors are being affected by many random events, the distribution law of these factors is assumed to be normal. The main feature of the normal distribution law is that it is a limiting law, which is being approached by other distribution laws under rather frequently encountered typical conditions. The presented technique includes in its algorithm the first technique for the appearance forming, and accounting for the risks of the AP achieving specified in the design specfications is an additional module to the existing techniques. This module allows assessing the risk of flying performance realization and account for these risks directly while the aircraft appearance forming. The obtained formulas establish interrelation between the required flight performance changes and parameters of distribution laws of the risk factors.

The account for the risks of the AC creating is a necessary element when comparing the AC options, as well as while assessing the program implementation as a whole. The approach described in the article to the accounting for the risks of an aircraft creating at the early stages of development allows assessing the likelihood of the program implementation in terms of achieving flight performance by the aviation complex.

This study results application to supplement the general technique allows complex comparison of the AC options under the impact of the probabilistic (random) factors.

Keywords:

uncertainty, risk factors, flight performance, aircraft preliminary design

References

  1. Myshkin L.V. Prognozirovanie razvitiya aviatsionnoi tekhniki (Forecasting the aviation technology development), Moscow, Nauka, 2017, 480 p.

  2. Barkovskii V.I., Skopets G.M., Stepanov V.D. Metodologiya formirovaniya tekhnicheskogo oblika eksportno orientirovannykh aviatsionnykh kompleksov (Methodology of export-oriented aviation complexes technical appearance forming), Moscow, Fizmatlit, 2008, 244 p.

  3. Skopets G.M. Vneshnee proektirovanie aviatsionnykh kompleksov. Metodologicheskie aspekty (External design of aviation complexes: Methodological aspects), Moscow, Lenand, 2017, 344 p.

  4. Platunov V.S. Metodologiya sistemnykh voenno-nauchnykh issledovanii aviatsionnykh kompleksov (Methodology of system military-scientific research of aviation complexes), Moscow, Del’ta, 2005, 344 p.

  5. Komarov A.V., Petrov A.N., Sartori A.V. Ekonomika nauki, 2018, vol. 4, no. 1, pp. 47–57. DOI: 10.22394/2410-132X-2017-4-1-47-57

  6. Petrov A.N., Sartori A.V., Filimonov A.V. Ekonomika nauki, 2016, vol. 2, no. 4, pp. 244-260. DOI: 10.22394/2410-132x-2016-2-4-244-260

  7. Manturov D.V., Kalachanov V.D., Klochkov V.V. Organizator proizvodstva, 2012, no. 1, pp. 49-53.

  8. Protsenko E.V. Aviation mechanical engineering scientific production enterprise innovative projects risks assessment method. Aerospace MAI Journal, 2016, vol. 23, no. 3, pp. 200-207.

  9. Fomkina V.I., Shatlovskaya K.V. Analysis and assessment of investment risks of aviation enterprises. Aerospace MAI Journal, 2012, vol. 19, no. 1, pp. 180-187.

  10. ISO 16290:2013. Space systems — Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment. URL: https://www.iso.org/standard/56064.html

  11. Denisov V.E., Isaev V.K., Ryabov A.M., Shkadov L.M. Uchenye zapiski TsAGI, 1973, vol. IV, no. 2, pp. 137–142.

  12. Ravachol M., Deremeaux Y., Dinh Q.V., Herbin E. Uncertainties at the conceptual stage: Multilevel multidisciplinary design and optimization approach. 26th International Congress of the Aeronautical Sciences ICAS-2008 (14-19 September 2008; Anchorage, Alaska).

  13. Pfeiffer T., Moerland E., Böhnke D., Nagel B., Gollnick V. Aircraft configuration analysis using a low-fidelity, physics based aerospace framework under uncertainty considerations. 29th Congress of the International Council of the Aeronautical Sciences ICAS 2014 (7-12 September 2014; St. Peterburg, Russia).

  14. Neufeld D., Chung J., Behdinan K. Aircraft Conceptual Design Optimization with Uncertain Contributing Analyses. AIAA Modeling and Simulation Technologies Conference (10–13 August 2009; Chicago, Illinois). DOI: 10.2514/6.2009-6237

  15. Kirby M.R., Mavris D.N. Forecasting Technology Uncertainty in Preliminary Aircraft Design. AIAA, World Aviation Conference (19-21 October 1999; San Francisco, CA). DOI:10.4271/1999-01-5631

  16. Mavris D.N., DeLaurentis D.A. A Stochastic Design Approach for Aircraft Affordability. 21st Congress of the International Council on the Aeronautical Sciences ICAS (September 1998. Melbourne, Australia). URI: http://hdl.handle.net/1853/6278

  17. Hosseini M., Nosratollahi M., Sadati H. Multidisciplinary Design Optimization of UAV under Uncertainty. Journal of Aerospace Technology and Management, 2017, vol. 9, no. 2, pp. 169-178. DOI: 10.5028/jatm.v9i2.725

  18. Mavris D.N., DeLaurentis D.A., Soban D.S. Probabilistic Assessment of Handling Qualities Characteristics in Preliminary Aircraft Design. 36th AIAA Aerospace Sciences Meeting and Exhibit (12-15 January 1998; Reno, NV, USA). DOI: 10.2514/6.1998-492

  19. Campbell A., Cheng A. Uncertainty Limits for an Aircraft-Based Runway Friction Assessment Method. Aviation Research Division FAA William J. Hughes Technical CenterAtlantic City, USA, 2016. URI: http://www.icrat.org/icrat/seminarContent/2016/papers/51/ICRAT_2016_paper_51.pdf

  20. Mavris D.N., DeLaurentis D.A. A Stochastic Design Approach for Aircraft Affordability. 21st Congress of the International Council on the Aeronautical Sciences ICAS (September 1998; Melbourne, Australia). GA 30332-0150, 1998. URI: http://hdl.handle.net/1853/6278

  21. DeLaurentis D.A., Mavris D.N., Schrage D.P. Schrage System Synthesis in Preliminary Aircraft Design Using Statistical Methods. 20th International Council of the Aeronautical Sciences (ICAS) Congress (8-13 September 1996; Sorrento, Italy). URI: http://hdl.handle.net/1853/6282

  22. Veresnikov G.S., Pankova L.A., Pronina V.A. et al. Determining maneuverable aircraft parameters in preliminary design under conditions of uncertainty. 21st International Conference on Knowledge Based and Intelligent Information & Engineering Systems KES-2017 (6-8 September 2017; Marseille, France). DOI: 10.1016/j.procs.2017.08.143

  23. Zhuravlev P.V. Design of passenger airplanes taking into account operational uncertainty factors related to aircraft fleet structure. Aerospace MAI Journal, 2009, vol. 16, no. 3, pp. 5-14.

  24. Venttsel’ E.S. Teoriya veroyatnostei (Probability theory), Moscow, Nauka, 1969, 576 р.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI