Lag effect impact in the control system channel of highly automated aircraft on the control lever type selection and its command signal

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, flying vehicles movement control


DOI: 10.34759/vst-2021-2-177-190

Аuthors

Ragulin I. A.*, Aleksandrov V. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: ilya-rag98@mail.ru
**e-mail: avv@mai.ru

Abstract

The presented work studied the impact of the stick type (side stick or central stick) and parameters (stiffness and time delay). The difference between the «command signal by the displacement» control, and the «command signal by the force» control was studied for each variable as well. Each study was being conducted on the stationary simulator, when the operator performed the task of pitch and tilt control. The main part of the studies is being conducted with account of the sensory system characteristics (the force gradient) and the gain of the controlled element (the control stick sensitivity), which is being selected according to the operator’s judgment. The study was emphasized enough on revealing the difference between the control signal transmission type to the flight control system for both control types, namely by the displacement and by the force. The major portion of the study related to the error dispersion dependence revealing associated with by the stick type (side stick or central stick) and command signal (DSC or FSC).

Switching from the command signal by the displacement to the signal proportional to the force reduces the error dispersion by 30–50%.

For the longitudinal channel, switching from the DSC stick to the FSC one leads to the three times error dispersion reduction, the throughput band increase by 60-70%, and cut-off frequency increase by 10-30%.

The operator evaluates the control object by the Cooper-Harper scale at the level of 3-3.5 PR employing the central DSC stick. When working with the DSC side stick, the estimation is 2.5-3.0 PR. Switching to the signal proportional to the force leads to the estimation improvement for the central stick by 0.5 points and by one point for the side control stick.

For the lateral channel, switching from the DSC stick to the FSC one leads to the two times error dispersion reduction, the throughput band increase by 25%, and cut-off frequency increase by 10%.

The operator evaluates the control object by the Cooper-Harper scale at the level of 4-4.5 PR, steering with the central DSC stick «control by the displacement». When steering with the DSC side stick, the estimation is 4.5-5.0 PR. Switching to the signal proportional to the force leads to the estimation improvement for the central stick by 0.5 points and by 2.5-3.0 point for the side control stick.

Keywords:

aircraft control stick, control lever stiffness, side control stick, signal proportional to the force

References

  1. Yilmaz D., Jump M., Linghai L., Jones M. Aircraft and Rotorcraft Pilot Couplings — Tools and Techniques for Alleviation and Detection. ACPOGA-2010-266073 Deliverable No. D2.3 State-of-the-art pilot model for RPC prediction report, 2011.

  2. Efremov A.V., Aleksandrov V.V., Efremov E.V., Vukolov M.V. The influence of different types of inceptors and their characteristics on the pilotaircraft system. IFAC-PapersOnLine, 2019, vol. 51, no. 34, pp. 372-377. DOI: 10.1016/j.ifacol.2019.01.013

  3. Smith R.E. Effects of control system dynamics on Fighter approach and Landing longitudinal flying qualities, 1978, vol. 1. AFFDL-TR-78-122.

  4. Magdaleno R.E., McRuer D.T. Effects of Manipulator Restraints on Human Operator Performance, 1966. AFFDL-TR-66-72.

  5. Mitchell D.G., Aponso B.L., Klyde D.H. Effects of Cockpit Lateral Stick Characteristics on Handling Qualities and Pilot Dynamics. NASA CR4443, 1992, 208 p.

  6. Samsonovich S.L., Makarin M.A., Larin A.P. Design of an aircraft side-stick controller based on electromechanical power mini drives. Aerospace MAI Journal, 2015, vol. 22, no. 4, pp. 7-20.

  7. Efremov A.V., Ogloblin A.V., Rodchenko V.V., Predtechenskii A.N. Letchik kak dinamicheskaya sistema (The pilot as a dynamic system), Moscow, Mashinostroenie, 1992, 330 p.

  8. Bjorkman E. Flight test evaluation of to predict longitudinal pilot-indused oscillation. Ph.D. Thesis, 1996.

  9. Hess R.A. Structural model of the adaptive human pilot. Journal of Guidance, Control, and Dynamics, 1979, vol. 3, no. 5, pp. 416-423. DOI: 10.2514/3.56015

  10. Efremov A.V. Sistema samolet-letchik. Zakonomernosti i matematicheskie modeli povedeniya letchika (Airplane-pilot system. Regularities and mathematical models of pilot behavior), Moscow, MAI, 2017, 194 p.

  11. Klyde D.H., Liang C.-Y. Approach and Landing Flight Evaluation of Smart-Cue and Smart-Gain Concepts. Journal of Guidance, Control, and Dynamics, 2009, vol. 32, no. 4, pp. 1057-1070. DOI: 10.2514/1.43157

  12. Efremov A.V., Aleksandrov V.V., Koshelenko A.V., Tjaglik M.S., Tzyan T.V. Development of pilot modeling and its application to manual control tasks. 27th International Congress of the Aeronautical Sciences ICAS (Sept. 2010; Nice, France). URL: http://www.icas.org/icas_archive/icas2010/papers/213.pdf

  13. Johnston D.E., McRuer D.T. Investigation of Interactions Between Limb-Manipulator Dynamics and Effective Vehicle Roll Control Characteristics. NASA CR-3983, 1986, 57 p.

  14. Efremov A.V., Tjaglik M.S., Tiumentzev Yu.V., Wenqian T. Pilot behavior modeling and its application to manual control tasks. IFAC-PapersOnLine, 2016, vol. 49, no. 32, pp. 159-164. DOI: 10.1016/j.ifacol. 2016.12.207

  15. Ashkenas J. Pilot modeling application. AGARD Lecture Series No. 157. AGARD-LS-157. May-June 1988.

  16. Zaychik L.E., Grinev K.N., Yashin Y.P., Sorokin S.A. Effect of Feel System Characteristics on Pilot Model Parameters. 1st IFAC Conference on Cyber-Physical & Human-System (Dec. 2016; Florianopolis, Brasil). DOI: 10.1016/j.ifacol.2016.12.208

  17. Mitchell D.G., Doman D.B., Key D.L., et al. Evolution, revolution and challenges of handling qualities. Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 1, pp. 12- 28. DOI: 10.2514/1.3252

  18. Flying qualities of piloted aircraft. MIL-STD-1797. Department of defense interface standard, 2004, 849 p.

  19. Dillow J.D. The Paper-Pilot — a digital computer program to predict pilot rating for the hover task. Air Force Flight Dynamics Laboratory, 1971. Report No. AFFDL TR 70-40, 98 p.

  20. Hess R. Unified theory for aircraft handling qualities and adverse aircraft pilot coupling. Journal of Guidance, Control, and Dynamics, 1977, vol. 20, no. 6, pp. 1141-1148. DOI: 10.2514/2.4169

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI