Motion control quality assessment of maneuverable aircraft

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, flying vehicles movement control


DOI: 10.34759/vst-2021-2-191-205

Аuthors

Vereshchikov D. V.*, Zhuravskii K. A.**, Kostin P. S.***

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: vdvikt@yandex.ru
**e-mail: 05061993ghka@mail.ru
***e-mail: texnnik@mail.ru

Abstract

The article presents the description of the study, consisting in assessment of the aircraft motion control quality by mathematical models of pilots actions while simulation, and a pilot-operator while semi natural modelling. Simulation modelling includes the following:

1) mathematical model based on the fuzzy sets theory;

2) mathematical model based on the theory of fuzzy sets with optimized parameters by the Broyden-Fletcher-Golfarbd-Shanno method;

3) mathematical model in the form of transfer functions.

The purpose of the study consists in creating a method for assessing the aircraft flight control.

The result of the study is the values of the root-mean square deviation (RMSD) of the of the aircraft movement kinematic parameters of the reference sampling of parameters (with the ideal fulfillment of the target piloting task) from the results of simulation and semi natural experiments. The places ranged by the RMSD ascending were assigned to mathematical models and semi natural experiment of the parameters under study to determine the best implementation by the quality and nature of control. All places were being added up. The implementation with the lowest sum is the best by the control quality and nature, which is imitation simulation of mathematical model, based on the fuzzy sets theory with optimized parameters (the sum of places equals to five). It has minimum RMSD by the three parameters. It occupies the second place in the ascending order.

Thus, a mathematical model based on the fuzzy sets theory with optimized parameters possesses all advantages of the mathematical model, based on the fuzzy sets theory (logicality of control). In other words, the dependence of the input parameters on the output ones is expressed by the logic rules, which allows the nonlinear system control, while its implementation simplicity does not require complex mathematical apparatus. The optimization algorithm allows compensating the disadvantage, such as the low quality of control, of the mathematical model base on the fuzzy logic theory.

The presented method for assessing the aircraft of movement control quality may be used for selecting a mathematical model of the pilot’s control actions, employed for studying the kinematic parameters of the aircraft movement at a specific target piloting task

Keywords: mathematical model of the pilot’s control actions, root-mean-square deviation of kinematic flight parameters, motion dynamics model of modern maneuverable combat aircraft, piloting-modelling test bench of a modern maneuverable combat aircraft.

Keywords:

mathematical model of the pilot’s control actions, root-mean-square deviation of kinematic flight parameters, motion dynamics model of modern maneuverable combat aircraft, piloting-modelling test bench of a modern maneuverable combat aircraft

References

  1. Myshkin L.V. Prognozirovanie razvitiya aviatsionnoi tekhniki: teoriya i praktika (Development Forecasting of aviation technology. Theory and practice), Moscow, Fizmatlit, 2006, 304 p.
  2. Okamoto K., Tsuchiya T. Optimal Aircraft Control in Stochastic Severe Weather Conditions. Journal of Guidance, Control, and Dynamics, 2015, vol. 39, no.1, pp. 77-85. DOI: 10.2514/1.G001105

  3. Tikhii I.I., Kashkovskii V.V., Poluektov S.P. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2009, no. 4(24), pp. 210-214.

  4. Grigorie T.L. Fuzzy Controllers. Theory and Applications. IntechOpen, 2011, рp. 297-326. DOI: 10.5772/572

  5. Nicholas E.D. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles. University of Cincinnati, Engineering and Applied Science: Aerospace Engineering. 2015. Publication No. AAT 3730073. URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427813213

  6. Beilin V.P., Naralenkov M.K. Nauchnye chteniya po aviatsii, posvyashchennye pamyati N.E. Zhukovskogo, 2015, no. 3, pp. 85-89.

  7. Vereshchikov D.V., Razuvaev D.V., Kostin P.S. Prikladnaya informatika: Primenenie Matlab@Simulink dlya resheniya prakticheskikh zadach (Applied informatics: Application of Matlab@Simulink for solving practical problems), Voronezh, VUNTs VVS «VVA», 2016, 104 p.

  8. D’yakonov V.P. MATLAB7.*/R2006/R2007: Samouchitel’ (MATLAB7.*/R2006/R2007. Self-help guide), Moscow, DMK Press, 2008, 768 p.

  9. Zhuravskii K.A., Filatov V.K. Materialy XLVI Mezhdunarodnoi molodezhnoi nauchnoi konferentsii «Gagarinskie chteniya — 2020», Мoscow, MAI, 2020, 117 p.

  10. Ikryannikov E.D., Is’kuo A.S., Levitskii S.V. et al. Samolet Yak-130UBS. Aerodinamika i letnye kharakteristiki (Yak-130UBS aircraft. Aerodynamics and flight characteristics), Мoscow, Mashinostroenie, 2015, 346 p.

  11. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. et al. Dinamika poleta (Dynamics of flight), Мoscow, Mashinostroenie, 2011, 776 p.

  12. Vereshchikov D.V., Nikolaev S.V., Razuvaev D.V. Sistemy upravleniya letatel’nykh apparatov (Aircraft control systems of), Voronezh, VUNTs VVS «VVA», 2018, 322 p.

  13. Majka A. Remotely piloted aircraft system with optimum avoidance maneuvers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, pp. 33-40. DOI: 10.1177/0954410017697997

  14. Zhuravskii K.A., Kostin P.S. Materialy XXXIX Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Problemy effektivnosti i bezopasnosti funktsionirovaniya slozhnykh tekhnicheskikh i informatsionnykh system». Serpukhov, Moskovskaya oblast’, filial VA RVSN, 2020, chast’ 3, pp. 153-157.
  15. Vereshchagin Y.O. Deck-based aircraft aileron adaptive control technique. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 78-82.

  16. Zhuravskii K.A., Kostin P.S., Filatov V.K. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM «Opredelenie kinematicheskikh parametrov poleta pri imitatsionnom modelirovanii upravlyayushchikh deistvii letchika» RU2021614397, 24.03.2021 (Certificate of State registration of computer programs «Flight kinematic parameters determining at the pilot control actions simulation», no. RU2021614397, 24.03.2021).

  17. Zhuravskii K.A., Kostin P.S., Pavlov S.V. Materialy XXI Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii i shkoly molodykh uchenykh, aspirantov i studentov «Aviakosmicheskie tekhnologii (AKT-2020)», Voronezh, Elist, 2020, pp. 134-135.

  18. Kostin P.S., Vereshchagin Yu.O., Voloshin V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57735

  19. Robinson T. Train virtual, fight easy. AERO SPACE. Royal aeronautical society, 2017, no. 6 (44), pp. 16-19. URL: https://www.aerosociety.com/news/train-virtual-fight-easy/

  20. Shtovba S.D. Proektirovanie nechetkikh sistem sredstvami MATLAB (Fuzzy systems design with MATLAB), Moscow, Goryachaya liniya — Telekom, 2007, 288 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI