Structure and mechanical properties of hypereutectic silumin irradiated by a pulsed electron beam

Metallurgy and Material Science

Material science


DOI: 10.34759/vst-2021-2-216-223

Аuthors

Ivanov Y. F.*, Rygina M. E.**, Petrikova E. A.***, Teresov A. D.****

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, IHCE SB RAS, 2/3, Akademichesky av., Tomsk, 634055, Russia

*e-mail: yufi55@mail.ru
**e-mail: l-7755me@mail.ru
***e-mail: petrikova@opee.hcei.tsc.ru
****e-mail: tad514@yandex.ru

Abstract

There are pre-eutectic (< 12 wt.% Si), eutectic (~12 wt.% Si), hypereutectic (> 12 wt.% Si) silumins. The structure of hypereutectic silumin consists of eutectic, primary grains of silicon, and intermetallic compounds based on iron, copper, etc. These elements are impurities getting into the alloy at the stage of melting from the charge.

Hypereutectic silumin is being employed in many branches of mechanical engineering as a material with good casting properties, which allows casting products of complex shapes. Low thermal expansion coefficient, high corrosion and wear resistance contribute to this alloy application as a material for plain bearings and pistons manufacturing.

Defects of macro and micro size pores and cracks emerge at the stage of casting. The size of the primary silicon grains reaches up to 100 microns while the castings cooling. The traditional methods application, such as alloying, changing the casting method, lead to the final product cost increasing, and restrictions on the casting shape appearing. Methods of materials’ high-energy processing ensure the surface recrystallization and of micro- and nano-crystalline structures forming.

The purpose of this work consists in analyzing the results obtained in mechanical tests performed under conditions of uniaxial tension of plane proportional hypereutectic silumin samples, subjected to a pulsed electron beam treatment.

The hypereutectic silumin alloy was prepared in a shaft type resistance laboratory electric furnace with silicon carbide heaters in a painted stainless steel crucible. The silicon content was 20 wt.%.

The obtained castings represented rectangular plates of the 55x120x20 mm size (without account for sprue), from which the samples of 15x15x5 mm size were being cut, as well as flat samples for the tensile tests.

Mechanical test of silumin were being brought about by the samples uniaxial stretching with the «INSTRON 3386» testing machine at a constant speed of 2.0 mm/min.

The studies of elemental and phase composition, the structure of the fracture surface were being performed by scanning electron microscopy («Philips SEM-515» and «LEO EVO 50» instruments) and transmission electron diffraction microscopy («JEOL JEM-2100F» instrument).

Due to the heating and cooling rates, the pulsed electron beam treatment allows for surface remelting, leading to the recrystallization of the layer up to 100–120 microns. The modified layer has a multiphase submicro-nanoscale structure, represented by high-speed crystallization cells separated by interlayers of the second phase, and globular silicon inclusions, which sizes vary from 1 µm to 2 µm.

The article presents the studies of the samples fracture. The main cause of destruction has been revealed. The processing mode, leading to a multiple increase in plastic properties, without loss of strength properties was determined.

Keywords:

hypereutectic silumin, deformation by uniaxial stretching of flat samples, yield strength, strength limit, fracture surface structure

References

  1. Belov N. А. Fazovii sostav i struktura siluminov (Phase composition and structure of silumins), Мoscow, MISIS, 2008, 282 p.

  2. Hansen M. Constitution of binary alioys. 2d ed. prep. with the coop. of Kurt Anderko. New-York, Mc Graw-Hill, 1958, 1305 p.

  3. Prigunova A.G., Petrov S.S., Koshelev M.V. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Gorizonty nauki: materialovedenie i metallurgiya», Groznyi, Groznenskii gosudarstvennyi neftyanoi tekhnicheskii universitet imeni akademika M.D. Millionshchikova, 2019, pp. 53-63.

  4. Shimanskii V.I., Evdokimov A.Yu., Cherenda N.N., Bibik N.V., Astashinskii V.M., Kuz’mitskii A.M. Materialy XIII Mezhdunarodnoi konferentsii «Vzaimodeistvie izluchenii s tverdym telom» (30 September — 3 October 2019; Minsk, Belarus), Minsk, BGU, 2019, pp. 328-330.

  5. Zheng L., Liu Y., Sun S., Zhang H. Selective laser melting of Al—8.5Fe—1.3V—1.7Si alloy: Investigation on the resultant microstructure and hardness. Chinese Journal of Aeronautic, 2015, vol. 28, no. 2, pр. 564–569. DOI: 10.1016/j.cja.2015.01.013

  6. Borowski J., Bartkowiak K. Investigation of the influence of laser treatment parameters on the properties of the surface layer of aluminum alloys. Physics Procedia, 2010, vol. 5, part A, pр. 449–456. DOI: 10.1016/j.phpro.2010.08.167

  7. Rajamure R.S., Vora H.D., Guta N., Karewar S.V., Srivilliputhur S., Dahotre N.B. Laser surface alloying of molybdenum on aluminum for enhanced wear resistance. Surface & Coatings Technology, 2014, vol. 258, pр. 337–342. DOI: 10.1016/j.surfcoat.2014. 08.074

  8. Marukovich E.I., Stetsenko V.Yu., Baranov K.N. Lit‘e i metallurgiya, 2017, vol. 2(87), pp. 5-11.

  9. Rygina M.E., Petrikova E.A., Teresov A.D., Ivanov Yu.F. Studying the possibility of hypereutectic silumin surface layer structure and properties modification by intense pulsed electron beam. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 248-256.

  10. Ivanov Yu.F., Klopotov A.A., Petrikova E.A., Rygina M.E., Tolkachev O.S., Klopotov V.D. Fiziko-himicheskie aspekti izuchenia klasterov, nanostruktur i nanomaterialov, 2020, no. 12, pp. 89-102. DOI: 10.26456/pcascnn/2020.12.089

  11. Petrikova E.A., Teresov A.D., Shimansky V.I., Rygina M.E., Ivanov Yu.F. Sovremenie metody i technologii sozdania i obrabotki materialov. Sbornik statei. V 3 knigah. Kniga. 1. Materialovedenie, Minsk, FTI NAN Belorusii, 2020, pp. 85-94.

  12. Petrikova E., Ivanov Yu., Rygina M., Prudnikov A., Teresov A., Vorobyov M. The Structure and Mechanical Characteristics of the Hypereutectic Silumin (Al—22—24 wt.% Si), Irradiated by a Pulsed Electron Beam. 7th International Congress on Energy Fluxes and Radiation Effects (EFRE) — 15th International Conference on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2020, pp. 460-463.

  13. Metalli. Metodi ispitanii na rastyachenie, GOST 1497-84 (Metals. Methods of tension test, State Standard1497-84), Moscow, Standarty, 2008, 6 p.

  14. Akhmadeev Yu.Kh., Denisov V.V., Ivanov Yu.F. et al. Elektronno-ionno-plazmennay modifikacia poverhnosti cvetnyh metallov i splavov (Electron-ion-plasma modification of non-ferrous metals and alloys surface), Tomsk, Naychno-tehnocheskay literatura, 2016, 312 p.

  15. Ivanov Yu.F., Petrikova E.A., Ivanova O.V., Ikonnikova I.A., Tkachenko A.V. Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2015, vol. 58, no. 4, pp. 46-51.

  16. Trefilov V.I., Moiseev V.F., Pechkovsky E.P., et al. Deformacionnoe uprochnenie I razrushenie polikristallicheskih metallov (Deformation hardening and destruction of polycrystalline metals), Kiev, Nauk, Dumka, 1987, 248 p.

  17. Malygin G.А. Fizika tverdogo tela, 2011, vol. 53, no. 2, pp.341-346.

  18. Malygin G.А. Fizika tverdogo tela, 2005, vol.47, no. 2, pp. 236-242.

  19. Podrezov Yu.N., Firstov S.А. Fizika I tehnika visokih davlenii, 2006, vol. 16, no. 4, pp. 37-48.

  20. Utevskii L.M. Difrakzionnay elektronnay microskopia v metallovedenii (Diffraction electron microscopy in metal science), Moscow, Metallurgia, 1973, 584 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI