Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: synthesis, microstructure and properties

Metallurgy and Material Science

Nanotechnologies and nanomaterials


DOI: 10.34759/vst-2021-2-224-237

Аuthors

Bukichev Y. S.*, Bogdanova L. M.**, Spirin M. G., Shershnev V. A.***, Shilov G. V.****, Dzhardimalieva G. I.*****

Institute of Problems of Chemical Physics of the Russian Academy of Sciences, IPCP RAS, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia

*e-mail: uresbuki4eff@yandex.ru
**e-mail: bogda@icp.ac.ru
***e-mail: femtos@mail.ru, shershnev@bmstu.ru
****e-mail: genshil@icp.ac.ru
*****e-mail: dzhardim@icp.ac.ru

Abstract

Titanium (IV) oxide nanopowder / epoxy polymer (n-TiO2/epoxy) nanocomposite films of 80-100 microns thickness were produced by adding n-TiO2 to the mixture of epoxy resin ED-20 and 4,4’-diaminodiphenylmethane (DDM) used as a hardener with subsequent curing. Phase composition, structure, and microstructure of the obtained nanocomposites were being studied by X-ray phase analysis (XRD), scanning electron microscopy (SEM), infrared (IR) spectroscopy, and ultraviolet and visible spectroscopy (UV-vis). The phase composition of n-TiO2 particles and n-TiO2/epoxy resin composites, determined by the XRD, revealed the presence of two titanium (IV) oxide polymorphic modifications: anatase and rutile. The XRD patterns of the composites exhibit typical diffraction peaks for the cured ED-20. Based on the data obtained and using the Debye-Scherrer formula, the average nanocrystallite size was calculated to be 45 and 140 nm for the initial nanoparticles and those incorporated into polymer (4.2 wt.%), respectively. Apparently, aggregation of n-TiO2 at this concentration leads to formation of microcomposite. XRD results agree with the data of scanning electron microscopy.

The particle size distribution histograms generated from the SEM data exhibit that while the n-TiO2/epoxy resin formation, the diameter of the particles increases from 46 nm to 80 nm for the initial n-TiO2 powder and the composite respectively, even at a relatively low nano-filler concentration of 0.5 wt. %. An increase in the n-TiO2 size occurs possibly as the result of the nanoparticles aggregation processes.

The structure of the obtained n-TiO2/epoxy resin nanocomposites was confirmed by the IR spectroscopy data as well.

Adding n-TiO2 slightly changes the DSC profile of the pure epoxy resin, moving the peak maximum corresponding to the curing reaction towards lower temperatures. The reaction enthalpy increases from 98.8 kJ/mol to 119.3 kJ/mol.

The n-TiO2 particles may have a twofold effect on the cure kinetics of the ED-20 resin. The presence of hydroxyl groups on their surface should accelerate the curing reaction. On the other hand, hydroxyl groups of the n-TiO2 are capable of forming intermolecular bonds with epoxy resin, reducing the reactivity of epoxy groups in reaction with DDM and integrating into the forming network, possibly generating more complex structures. The detailed mechanism of such processes requires further studies.

Photo-activity of the n-TiO2/epoxy resin nanocomposite under the UV irradiation was studied.

Keywords:

epoxy resin, nanocomposite, TiO2 nanoparticles, curing, photo-irradiation, photo-catalysis

References

  1. Bychkov A.N., Fetisov G.P., Kydralieva K.A., Sokolov E.A., Dzhardimalieva G.I. Nanocomposite materials based on metallic nanoparticles and thermoplastic polymer matrices: production and properties. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 209-222.

  2. Aydemir T., Golubeva N.D., Shershneva I.N., Kydralieva K.A., Dzhardimalieva G.I. Formation, structure and magnetic properties of nanocomposites obtained by Fe(III)Co(II) cocrystallized complexes thermal decomposition. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 219-228.

  3. Pokrovskii A.M., Chermoshentseva A.S. Experimental study of nano-additives effect on properties of composite materials with interlayer defects. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 212-221.

  4. Carp O., Huisman C.L., Reller A. Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 2004, vol. 32, no. 1-2, pp. 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001

  5. Salomatina E.V., Bityurin N.M., Gulenova M.V. et al. Synthesis, structure, and properties of organic—inorganic nanocomposites containing poly (titanium oxide). Journal of Materials Chemistry C, 2013, vol. 1, no. 39, pp. 6375–6385. DOI: 10.1039/C3TC30432A

  6. Salyakhova M.A., Abdullin I.Sh., Uvaev V.V., Kaidrikov R.A. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, no. 12, pp. 101-102.

  7. Martins A.C., Cazetta A.L., Pezoti O., et al. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 2017, vol. 43, no. 5, pp. 4411–4418. DOI: 10.1016/j.ceramint.2016.12.088

  8. Xiao H., Li J., He B. Anatase-titania templated by nanofibrillated cellulose and photocatalytic degradation for methyl orange. Journal of Inorganic and Organometallic Polymers and Materials, 2017, vol. 27, pp. 1022–1027. DOI: 10.1007/s10904-017-0550-8

  9. Fujishima A., Rao T.N., Tryk D.A. Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, vol. 1, no. 1, pp. 1-21. DOI: 10.1016/S1389-5567(00)00002-2

  10. Khalid N.R., Majid A., Tahir M.B., Niaz N.A., Khali S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceramics International, 2017, vol. 43, no. 17, pp. 14552–14571. DOI: 10.1016/j.ceramint.2017.08.143

  11. Sanwaria A.R., Gopal R., Jain J., et al. Highly Pure Brookite Phase of TiO2 from Salicylaldehyde Modified Titanium (IV) Isopropoxide: Synthesis, Characterization and Photocatalytic Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2020, vol. 30, pp. 1393–1403. DOI: 10.1007/s10904-019-01314-w

  12. Humayun M., Raziq F., Khan A., Luo W. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 2018, vol. 11, no. 2, pp. 86-102. DOI: 10.1080/17518253.2018.1440324

  13. Bella F., Muñoz-García A.B., Colò F., et al. Combined Structural, Chemometric, and Electrochemical Investigation of Vertically Aligned TiO2 Nanotubes for Na-ion Batteries, ACS Omega, 2018, vol. 3, no. 7, pp. 8440–8450. DOI: 10.1021/acsomega.8b01117

  14. Murugan K., Subasri R., Rao T.N. et al. Synthesis, Characterization and Demonstration of Self-Cleaning TiO2 Coatings on Glass and Glazed Ceramic Tiles. Progress in Organic Coatings, 2013, vol. 76, no. 12, pp. 1756–1760. DOI: 10.1016/j.porgcoat.2013.05.012

  15. Bodaghi H., Mostofi Y., Oromiehie A., Ghanbarzadeh B., Hagh Z.G. Synthesis of clay—TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. Applied Polymer Science, 2015, vol. 132, no. 14. DOI: 10.1002/app.41764

  16. Prodanchuk N.G., Balan G.M. Sovremennye problemy toksikologii, 2011, no. 4(54), pp. 11-27.

  17. Berestenko V.I., Torbov V.I., Chukalin V.I., et al. Khimiya vysokikh energii, 2011, vol. 45, no. 5, pp. 468-472.

  18. Irzhak V.I., Rozenberg B.A., Enikolopyan N.S. Setchatye polimery: sintez, struktura, svoistva (Meshed polymers: synthesis, structure, properties), Moscow, Nauka, 1979, 248 p.

  19. Rozenberg B.A., Oleinik E.F. The Formation, Structure, and Properties of Epoxide Matrices for High-strength Composites. Russian Chemical Reviews, 1984, vol. 53, no. 2, pp. 164-173. DOI: 10.1070/RC1984v053n02ABEH003037

  20. Rozenberg B.A. Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. In: Dušek K. (eds) Epoxy Resins and Composites II. Advances in Polymer Science, 1986, vol. 75. Springer, Berlin, Heidelberg. DOI: 10.1007/BFb0017916

  21. Bogdanova L.M., Lesnichaya V.A., Volkova N.N., et al. Epoxy/TiO2 composite materials and their mechanical properties. Bulletin of the Karaganda University, 2020, pp. 80-87. DOI: 10.31489/2020Ch3/80-87

  22. Gao L., Yin C., Luo Y., Duan G. Facile Synthesis of the Composites of Polyaniline and TiO2 Nanoparticles Using Self-Assembly Method and Their Application in Gas Sensing. Nanomaterials, 2019, vol. 9, no. 4, pp. 493. DOI: 10.3390/nano9040493

  23. Kunnamareddy M., Diravidamani B., Rajendran R., et al. Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2018, vol. 29, pp. 18111–18119. DOI: 10.1007/s10854-018-9922-2

  24. Dan S., Gu H., Tan J., Zhang B., Zhang Q. Transparent epoxy/TiO2 optical hybrid films with tunable refractive index prepared via a simple and efficient way. Progress in Organic Coatings, 2018, vol. 120, pp. 252–259. DOI: 10.1016/j.porgcoat.2018.02.017

  25. Monai M., Montini T., Fornasiero P. Brookite: Nothing New under the Sun? Catalysts, 2017, vol. 7, no. 10, pp. 304-323. DOI: 10.3390/catal7100304

  26. Bogdanova L.M., Irzhak V.I., Rozenberg B.A. Rol’ diffuzionnogo mekhanizma v relaksatsii ob"ema amorfnykh polimerov (Diffusion mechanism role in relaxation of amorphous polymers volume), Preprint, Chernogolovka, 1985, 19 p.

  27. Segawa H., Tateishi K., Arai Y., Yoshida K., Kaji H. Patterning of hybrid titania film using photopolymerization. Thin Solid Films, 2004, vol. 466, no. 1-2, pp. 48-53. DOI: 10.1016/j.tsf.2004.01.111

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI