Bench tests methodological specifics of submersible electric centrifugal pumps gas separating installations for oil extraction

Aeronautical and Space-Rocket Engineering

To the 100th anniversary of B.V. Ovsyannikov


DOI: 10.34759/vst-2021-3-73-80

Аuthors

Trulev A. V.1*, Shmidt E. M.2**

1. Company "Rimera", Innovation center “SKOLKOVO”, 40, Bolshoy Bulvar, Moscow, 143026, Russia
2. Company "Rimera-Alnas", 2, Surgutskaya str., Almetyevsk, Rep. Tatarstan, 423450, Russia

*e-mail: aleksey.trulev@rimera.com
**e-mail: evgeniy.shmidt@rimera.com

Abstract

About 70% of the stratum fluid is being extracted by submersible installations of electric centrifugal pumps (ESP). To increase the oil recovery coefficient (ORC), the depression on the stratum increases, the bottom-hole pressure decreases, and technological operations for stratum hydraulic fracturing are being employed.

In this regard, the content of free gas and mechanical impurities increases at the ECP installation inlet. It is necessary to improve the free gas separation efficiency and of gas separators reliability. New, more accurate techniques of bench tests are necessary for the new design solutions testing and developing.

Conventional techniques for gas separators testing on the gas separation efficiency may be conditionally attributed to the two basic techniques. According to the first technique, the gas-liquid mixture (GLM) is being fed into a pipe that simulates the annular space, while according to the second one it is being fed directly to the gas separator inlet.

The first pneumo-hydraulic scheme simulates integrally the gas separator (GS) operation in a well. Some part of the gas misses the gas separator inlet. The efficiency of this pre-separation depends on the design of the base, protective grid and the size of the gas bubbles' average diameter. The larger the diameter, the more likely the bubbles will not get into the gas separator. In this regard, the devices for the gas phase enlargement are relevant.

If the separator is installed inside the pipe, it is difficult to measure the flow parameters inside the flow part, although, namely, this information on what percentage of gas entered the GS, and what percentage missed it due to the pre-separation is necessary to improve the flow part. Difficulties in obtaining the information necessary to improve the flow part inside the GS may be assigned to the disadvantages of the first technique.

The advantage of the second technique consists in the fact that the gas-liquid mixture is being fed directly to the tested gas separator inlet. The quantity herewith of the free gas entering the GS is precisely known. Information on the efficiency of the free gas separation inside the GS, and the capability of measuring the flow parameters inside the GS, allow evaluating the operation of the flow part elements. The disadvantage of this technique consists in the problem of accurate differential pressure maintaining between the areas of the GLM at the gas separator inlet and the separated gas at the outlet, which should correspond to the difference in annular space.

Based on the analysis, the third promising technique and the pneumo-hydraulic scheme of the new test bench were developed and presented. By the authors opinion, the technique combines pros and aligns cons of the conventional techniques. It allows fully simulate tests in the well, and perform measurements in the flow part of the separator.

When optimizing and searching for new design solutions for the flow part elements to increase the separating properties efficiency, the new technique allows installing pressure gauges and special taps for sampling on the gas separator housing, determining the pressure gradients along the length of the separation chamber and the degree of mixture dispersion. The separation efficiency is higher for structures with the higher pressure gradient and larger average diameter of gas bubbles.

Keywords:

gas separators, installations of submersible electric centrifugal pumps for oil extraction, gas separators testing techniques, pneumo-hydraulic schemes of test benches for gas separators testing, gas-liquid mixture, gas separation efficiency

References

  1. Den’gaev A.V., Drozdov A.N., Verbitskii V.S. Neftyanoe khozyaistvo, 2004, no. 6, pp. 96–99.

  2. Igrevskii L.V., Drozdov A.N., Den’gaev A.V., Lambin D.N. Neftepromyslovoe delo, 2002, no. 9, pp. 28–32.

  3. Razrabotka gazoseparatora v gabarite 5 so smennymi shnekami: Otchet o NIR po dogovoru № 80-12/05-01-12 ot 15.02.2012 (Development of a gas separator in size 5 with replaceable augers. Research report under the Contract No. 80-12 / 05-01-12 of 15.02.2012), Moscow, RGU nefti i gaza im. I.M. Gubkina, 2015, 159 p.

  4. Obosnovanie i razrabotka ratsional’noi PGS stenda dlya eksperimental’nykh issledovanii kharakteristiki gazoseparatorov. Informatsionnyi otchet po teme dogovora № 113-UK/61-07 ot 14.10.2007 (Substantiation and development of rational PGS test bench for experimental studies of gas separators characteristics. Information report on the topic of the Contract No. 113-UK/61-07 of 14.10.2007), Moscow, RGU nefti i gaza im. I.M. Gubkina, 2007, 80 p.

  5. Stendovye ispytaniya gazoseparatora i gazoseparatora – dispergatora 4 gabarita. Otchet po dogovoru № ALN-DVOUPT/0996/18 ot 19.12.2018 (Bench tests of gas separator and a gas separator-dispersant of the 4-th size. Report on the Contract no. ALN-DVOUPT/0996/18 of 19.12.2018), Moscow, RGU nefti i gaza im. I.M. Gubkina, 2018, 63 p.

  6. Bulat A.V., Ivanovskii V.N., Orlova E.A. et al. Territoriya NEFTEGAZ, 2020, no. 3-4, pp. 94-102.

  7. Mironov Yu.S., Gafurov O.G., Asylgareev A.N. Sbornik aspirantskikh rabot UFNII, 1970, issue IV, pp. 146–168.

  8. Timushev S.F., Fedoseev S.Y. Definition of the incipient cavitation number in a centrifugal pump by computational testing. Aerospace MAI Journal, 2012, vol. 19, no. 2, pp. 89-93.

  9. Yakovlev A.А., Timushev S.F., Tsipenko A.V. Study of axial fan in the CAE system “FlowWision”. Aerospace MAI Journal, 2011, vol. 18, no. 6, pp. 35-38.

  10. Gordeev V.A., Timushev S.F., Firsov V.P., Tsipenko A.V., Yakovlev A.А. Design basics of aggregates disclosure of centrifugal space systems. Aerospace MAI Journal, 2011, vol. 18, no. 1, pp. 47-53.

  11. Kutateladze S.S., Styrikovich M.A. Gidravlika gazo-zhidkostnykh system (Hydraulics of gas-liquid systems), Moscow – Leningrad, Gosenergoizdat, 1958, 231 p.

  12. Tong L. Teplootdacha pri kipenii i dvukhfaznoe techenie (Heat transfer at boiling and two-phase flow), Moscow, Mir, 1963, 342 p.

  13. Isaev G.A., Kalan V.A., Petrov V.I. Materialy V Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Razrabotka, proizvodstvo i ekspluatatsiya, turbo-, elektronasosnykh agregatov i sistem na ikh osnove”, Voronezh, 2009, pp. 136–147.

  14. Kalan V.A., Petrov V.I., Isaev G.A., Trulev A.V. Patent RU 2425254 C2, 27.07.11.

  15. Sitnikov V.I., Trulev A.V. Patent RU 2588332 C1, 27.06.16.

  16. Trulev A.V., Leonov V.V. Patent RU 2647175 C1, 14.03.18.

  17. Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh (Technology and technique of oil production by submersible pumps in abnormal conditions), Moscow, MAKS Press, 2008, 309 p.

  18. Petrov V.I., Chebaevskii V.F. Kavitatsiya v vysokooborotnykh lopastnykh nasosakh (Cavitation in high-speed vane pumps), Moscow, Mashinostroenie, 1982, 192 p.

  19. Trulev A.V., Timushev S.F., Lomakin V.O., Kayuda M.S. Neft’. Gaz. Novatsii, 2020, no. 2(231), pp. 55-60.

  20. Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Series: Materials Science and Engineering. 2020, vol. 779. DOI: 10.1088/1757-899X/779/1/012036

  21. Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiiskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie. Entsiklopedicheskii spravochnik (Russian vane pumps installations for oil production and their application. Encyclopedic reference book), Perm, Pres-Master, 2007, 645 p.

  22. Trulev A.V., Timushev S.F., Shmidt E.M. Neft’. Gaz. Novatsii, 2020, no. 7(236), pp. 59-66.

  23. Trulev A.V., Timushev S.F., Lomakin V.O. Nasosy. Turbiny. Sistemy, 2020, no. 2(35), pp. 11-27.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI