Filling the double-shell wing of a gliding parachute

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2021-3-81-94

Аuthors

Ivanov P. I.

Research Institute of Aeroelastic Systems, 85, Garnaeva str, Feodosia, Crimea Republic, 298112, Russia

e-mail: Ivanovpetr@rambler.ru

Abstract

Based on the engineering mathematical models the article considers the issues of filling and defining the dome (wing) filling criteria of a double-shell gliding parachute, which is directly interrelated with such important parameters and characteristics as aerodynamic load on the parachute, parachute strength, the filling path, altitude loss while filling and the wing geometry stability.

The double-shell wings fillability of the gliding parachutes means their capability of taking its aerodynamic fully filled shape (from the state of the wing stowed in a package) under the impact of velocity head of the incoming flow in a definite time called the filling time.

The article regards certain basic moments and structural specifics, significantly affecting the filling process of the double-shell gliding parachute.

Great attention is paid in the work to the air intake operation efficiency, depending upon the whole number of factors, such as:

– Divergence angle of the system velocity vector line of action with the normal to the air intake plane, depending on its location on the wing. It defines the wing filling efficiency and maintaining sufficient excessive pressure in it to keep the wing filling geometry;

– Air intake area;

– The Strouhal number, which determines the pulsation nature of the mass of air emissions from the wing through the air intake into the external flow, which causes the pulsation nature of the entire pattern of the external flow, significantly increasing the resistance of the wing and reducing the speed of the system.

The article presents engineering calculations for estimating the filling time of the sections and the wing as a whole, with account the for structural air permeability in the wing ribs. The differential equation of the masses balance of the air entering the section and flowing out of it was formed. Integration was performed, and the dependences for determining the gliding parachute wing section filling time were obtained. The time dependence for the volume of the section being filled was obtained as well. Graphs for the obtained dependencies are presented and their analysis is performed.

The article considers in detail the gliding parachute filling criteria, such as filling time and the Strouhal number, characterizing the wing filling efficiency. These criteria may be employed while comparing filling processes and optimal option of the gliding parachute structure selection.

Keywords:

fullness, fillability, filling time, filling criteria, double-shell wing, gliding parachute

References

  1. Ivanov P.I., Ivanov R.P., Kuyanov A.Yu., Sitailo M.V. Materialy Nauchno-tekhnicheskoi mezhdunarodnoi konferentsii “Komp’yuternoe modelirovanie v naukoemkikh tekhnologiyakh” KMNT – 2014 (28-31 May 2014, Khar’kov). Khar’kov, Khar’kovskii natsional’nyi universitet im. V.N. Karazina, 2014, pp. 181-185.

  2. Ivanov P.I., Kuyanov A.Yu. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2012, no. 6(93), pp. 33-36. URL: http://nbuv.gov.ua/UJRN/aktit_2012_6_8

  3. Ivanov P.I., Kuyanov A.Yu. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2013, no. 1(98), pp. 25-30.

  4. Brysov O.P., Ezeeva E.P., Limonad Yu.G. Uchenye zapiski TsAGI, 1984, vol. XV, no. 3, pp. 121-126.

  5. Ivanov P.I., Kurinnyi S.M., Krivorotov M.M. Asymmetry in the parachute canopy filling process. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 7-16.

  6. Ivanov P.I. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2020, no. 12, pp. 44–53.

  7. Ivanov P.I. Proektirovanie, izgotovlenie i ispytaniya paraplanov (Design, manufacturing and testing of paragliders), Feodosiya, Grand-S, 2007, 281 p.

  8. Ivanov P.I. Metody letnykh ispytanii i issledovanii parashyutnykh sistem i paraplanernykh letatel’nykh apparatov (Methods of flight tests and research of parachute systems and paragliding aircraft). Doctor’s thesis, Feodosiya, NII aerouprugikh sistem, 2003, 333 p.

  9. Ivanov P.I. Letnye ispytaniya parashyutnykh system (Flight tests of parachute systems), Feodosiya, Grand–S, 2001, 331 p.

  10. Rysev O.V. Parashyutnye sistemy i pronitsaemye tela. Sbornik statei, Moscow, MGU, 1987, pp. 25-36.

  11. Rysev O.V. Materialy Nauchno-tekhnicheskogo seminara “Parashyutnye sistemy. Teoriya, konstruktsiya, eksperiment” (1996; Moscow), Moscow, MAI, 1997, pp. 10-19.

  12. Churkin V.M. Ustoichivost’ i kolebaniya parashyutnykh system (Stability and oscillations of parachute systems), Moscow, URSS, 2018, 230 p.

  13. Churkin V.M. Dinamika parashyutnykh sistem na etape spuska (Parachute systems dynamics at the descent stage), Moscow, MAI-PRINT, 2008, 184 p.

  14. Churkin V.M., Serpicheva E.V., Silantiev V.M. Trudy MAI, 2003, no. 12. URL: http://trudymai.ru/eng/published.php?ID=34455

  15. Rysev O.V., Vishnyak A.A., Churkin V.M., Yurtsev Yu.N. Dinamika svyazannykh tel v zadachakh dvizheniya parashyutnykh sistem (Dynamics of connected bodies in problems of parachute systems movement), Moscow, Mashinostroenie, 1992, 288 p.

  16. Churkin V.M., Churkina T.Yu. The Analysis of free oscillations parachute Systems with elastic line. Aerospace MAI Journal, 2012, vol. 19, no. 3, pp. 143-148.

  17. Ivanov P.I. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2020, no. 10, pp. 37–50.

  18. Lyalin V.V., Morozov V.I., Ponomarev A.T. Parashyutnye sistemy. Problemy i metody ikh resheniya (Parachute systems. Problems and methods of their solution), Moscow, Fizmatlit, 2009, 576 p.

  19. Lobanov N.A. Osnovy rascheta i konstruirovaniya parashyutov (Fundamentals of calculation and design of parachutes), Moscow, Mashinostroenie, 1965, 356 p.

  20. Rysev O.V., Ponomarev A.T., Vasil’ev M.I. et al. Parashyutnye sistemy (Parachute systems), Moscow, Nauka, 1996, 286 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI