Double bypass turbojet engine structure analysis

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2021-3-159-170

Аuthors

Filinov E. P.*, Bezborodova K. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: filinov@ssau.ru
**e-mail: krityborodova@gmail.com

Abstract

Five schemes of double bypass engines with changeable working process were considered in the work:

  1. A double bypass turbojet engine with an afterburner chamber (DBTEAC), in which the air flow from the third circuit is being supplied directly into the common afterburner chamber;

  2. The double bypass engine consisting of the two gas turbine engines. One of the engines is a turboshaft one with a free turbine, which represents the additional turbine of the second engine, which is a turbo-eject one;

  3. The double bypass engine with independently controlled third circuit;

  4. The Rolls-Royce company double bypass engine with changeable work process, consisting of a central bypass engine and additional modules placed around it, such as bypass turbojet engine or turbojet engine with afterburner.

  5. The FLADE VCE double bypass engine of changeable work cycle with extra modules.

Computer simulation of three models of double bypass engines was performed with the ASTRA CAE system, which covers the entire cycle of thermo-gas-dynamic design of a gas turbine engine. The prototype engine was the RD-33 turbojet engine with an afterburner. Besides the thermodynamic calculations, computations of the full flight cycle, mass characteristics of the power plant and aircraft as well as efficiency criteria were performed.

Variation of the degree of both bypass and double bypass values allowed obtaining the values of the total mass of the power plant, and fuel required for a flight at a given range — Msu+t, as well as the fuel consumption in kilogram per one ton-kilometer of transported cargo — Ct.km.

In the course of this computation the conclusion was made that the most rational and favorable ratio of efficiency parameters was obtained from the double bypass gas turbine engine of the FLADE VCE variable duty cycle.

The resulting parameters exceed the values of efficiency parameters of the prototype engine by 13%. These parameters may be employed to perform structural-parametric optimization of parameters to reduce the fuel costs and increase the engines efficiency with a complex cycle, designed for military aviation, on the cruising section of the flight.

Keywords:

double bypass turbojet engine, engine with changeable work process, afterburner chamber, flows mixing, bypass ratio, double bypass ratio, computational model

References

  1. Ezrokhi Yu.A., Drygin A.S., Kizeev I.S. et al. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91846

  2. Tereshchenko Yu.M., Doroshenko E.V., Lastivka I.A. Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 2013, vol. 5, no. 7(65), pp. 38-41.

  3. Agul'nik A.B., Kravchenko I.V., Gorbunov A.A. et al. Influence analysis of the second bypass air bleed parameters on the engine performance. Russian Aeronautics, 2018, vol. 61, no. 3, pp. 441-444. DOI: 10.3103/S1068799818030182

  4. Agul'nik A.B., Gorbunov A.A., Novoselova A.A. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Problemy i perspektivy razvitiya dvigatelestroeniya” (12-14 September 2018; Samara), Samarskii natsional'nyi issledovatel'skii universitet imeni akademika S.P. Koroleva, 2018, pp. 98-100.

  5. Manoharan S. Innovative Double Bypass Engine for Increased Performance. ProQuest Dissertations and Theses; Thesis (M.S.A.E.). Embry-Riddle Aeronautical University, 2013. Publication Number: AAT 1537029, Advisor, Attia, Magdy.

  6. Simmons R.J. Design and Control of Variable Geometry Turbofan with an Independently Modulated Third Stream. ProQuest Dissertations and Theses, Thesis (Ph.D.). The Ohio State University, 2009, 124 p. Publication Number: AAI3375728; Advisor: Benzakein, Meye.

  7. Pis'mennyi V.L. Kholodnoe forsirovanie gazoturbinnykh dvigatelei, 1999. URI: https://mai.ru/upload/iblock/bd3/kholodnoe-forsirovanie-gazoturbinnykh-dvigateley.pdf

  8. Ezrokhi Y.A., Kalenskii S.M., Kizeev I.S. Double-flow turboprop with afterburner weight indices estimation at the initial stage of its design. Aerospace MAI Journal, 2017, vol. 24, no. 1, pp. 26-37.

  9. Grönstedt T. Development of Methods for Analysis and Optimization of Complex Jet Engine Systems. Thesis (Ph.D.), Chalmers University of technology, 2000, 132 p.

  10. Karasiov V.N. Simulation of dynamical characteristics for complicated design scheme gas-turbine engines. Aerospace MAI Journal, 2007, vol. 14, no. 4, pp. 30-35.

  11. Ezrokhi Yu.A., Drygin A.S., Kizeev I.S. Patent RU 2637153 S1, 30.11.2017.

  12. Pis'mennyi V.L. Patent RU 2253745 S2, 10.06.2005.

  13. Shmotin Yu.N., Kikot' N.V., Kretinin G.V. et al. Nasosy. Turbiny. Sistemy, 2016, no. 2(19), pp. 40-48.

  14. Nechaev Yu.N., Kobel'kov V.N., Polev A.S. Aviatsionnye turboreaktivnye dvigateli s izmenyaemym rabochim protsessom dlya mnogorezhimnykh samoletov (Aircraft turbojet engines with changeable working process for multi-mode aircraft), Moscow, Mashinostroenie, 1988, 176 p.

  15. Zhang X., Wang Z. Optimization of FLADE variable cycle engine performance based on improved differential evolution algorithm. ASME 2017 Gas Turbine India Conference (7–8 December 2017; Bangalore, India). DOI: 10.1115/GTINDIA2017-4771

  16. Ezrokhi Yu.A., Kalenskii S.M., Morzeeva T.A. Patent RU 168499 U1, 07.02.2017.

  17. Guseva R.I. Osobennosti konstruktsii, organizatsiya raboty aviatsionnykh dvigatelei (Design features, organization of aircraft engines operation), Komsomolsk-on-Amur, KnAGTU, 2015, 100 p.

  18. Tkachenko A.Yu., Rybakov V.N., Krupenich I.N. et al. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional'nogo issledovatel'skogo universiteta), 2014, no. 5-3(47), pp. 113-119.

  19. Tkachenko A.Yu., Krupenich I.N. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional'nogo issledovatel'skogo universiteta), 2012, no. 3-2(34), pp. 333-242.

  20. Kuz'michev V.S., Tkachenko A.Yu., Rybakov V.N. et al. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional'nogo issledovatel'skogo universiteta), 2012, no. 5(36), pp. 160-164.

  21. Filinov E.P. Metody i sredstva vybora parametrov rabochego protsessa i skhem malorazmernykh turboreaktivnykh dvigatelei na etape kontseptual'nogo proektirovaniya (Methods and means of parameters selection of work process and schemes of small-sized turbojet engines at the stage of conceptual design), Doctor’s thesis, Samara, Samarskii natsional'nyi issledovatel'skii universitet imeni akademika S.P. Koroleva, 2019, 149 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI