Mathematical model identification of gas turbine engine with account for initial data uncertainty

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2021-3-171-185

Аuthors

Baturin O. V.*, Nikolalde P. ..**, Popov G. M.***, Korneeva A. I.****, Kudryashov I. A.*****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: oleg.v.baturin@gmail.com
**e-mail: nikopaul_15@hotmail.com
***e-mail: popov@ssau.ru
****e-mail: akorneeva94@mail.ru
*****e-mail: ivan.kudryash1337@gmail.com

Abstract

The computational models used today require unambiguous (deterministic) values of the initial data in order to obtain a solution. In reality, however, the researcher often does not know the exact value of a given quantity. He knows the results of their direct or indirect measurement, which has a margin of error. Awareness of the fact of the initial data uncertainty may lead to a complete rethinking of the computational study process and the interpretation of its results.

In the conducted study, the authors created a stochastic thermodynamic model of the AI-25 gas turbine engine that accounts for the initial data uncertainty.

As the result of the available set of experimental results generalization the most probable values of the measured engine parameters have been found. Based on these, a deterministic thermodynamic model of the AI-25 engine operating process for the selected operating mode was created. Further, an algorithm was developed and implemented, which transformed a deterministic mathematical model of the AI-25 engine operating process at the operating mode of interest into a stochastic one. It allows determining the scatter of outlet parameter values, knowing the scatter of several inlet parameters. The stochastic model has been built on the assumption that the scatter of uncertain inlet data complied with a normal distribution law. Notwithstanding that the thermodynamic model is relatively simple and fast, it requires a huge number of calls to the initial deterministic computational model, which does not allow obtaining stochastic results for all variables of interest in a reasonable time frame.

For this reason, a stochastic solution was being searched for in two stages. At the first stage, a sensitivity analysis was being performed. As the result, the initial data was ranked according to the degree of the end result affecting. A study, in which computation of specific fuel consumption scattering for 2, 3, 4, 5 and 6 first variables of the series was being performed sequentially, was conducted for the sequence obtaining. The scatter of specific fuel consumption values and other important parameters at the selected engine operation mode was changing insignificantly after accounting for more than five affecting variables. The obtained data was transformed into the bell-shaped bivariant distribution on the graph of the parameter of interest dependence on the air consumption. The obtained data herewith was compared with the similar bell-shaped graph, obtained by the experimental data.

With the conventional deterministic approach, computational and experimental results obtained for the same mode are the points of the graph. Their mismatch is being computed in the form of the two differences (deviations) along the two coordinate axes. Given that the errors of the two points being compared determining are not accounted for herewith, the obtained mismatch has an error, which value is unknown. The stochastic approach allows giving a quantitative description of the mismatch. It represents a bell-shaped bivariant distribution, described by the two parameters: the expectation of the difference and the mean-square deviation for the two coordinate axes.

Keywords:

computations uncertainty, initial data uncertainty, computation error, validation, thermodynamic calculation, experiment error, sensitivity analysis, gas-turbine engine

References

  1. Montomoli F., Carnevale M., D’Ammaro A., Massini M., Salvadori S. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. SpringersBriefs in Applied Sciences and Technology, 2015, 208 p. DOI: 10.1007/978-3-319-92943-9

  2. Khustochka O., Сhernysh S., Yepifanov S., Ugryumov M., Przysowa R. Estimation of performance parameters of turbine engine components using experimental data in parametric uncertainty conditions. 9th EASN International Conference “Innovation in Aviation & Space”, 2019, vol. 304. Article Number 03003. DOI: 10.1051/matecconf/201930403003

  3. Bai J., Liu S., Wang W., Chen Y. WITHDRAWN: Study on identification method for parameter uncertain model of aero gas turbine. Propulsion and Power Research, 2019. DOI: 10.1016/j.jppr.2019.11.004

  4. Helton J.C., Johnson J.D., Sallaberry C.J., Storlie C.B. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety, 2006, vol. 91, no. 10-11, pp. 1175-1209. DOI: 10.1016/j.ress.2005.11.017

  5. Nazareth J.L. Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, vol. 1, no. 3, pp. 348-353. DOI: 10.1002/wics.13

  6. Lange A., Voigt M., Vogeler K., Johann E. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (23-26 April 2012; Honolulu, Hawaii), vol. 53. DOI: 10.2514/6.2012-1762

  7. Ghisu T., Parks G.T., Jarrett J.P., Clarkson P.J. Adaptive polynomial chaos for gas turbine compression systems performance analysis. AIAA Journal, 2010, vol. 48, no. 6, pp. 1156-1170. DOI: 10.2514/1.J050012

  8. Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok. V 2 knigakh (Theory, calculation and design of aircraft engines and power plants: Textbook. In 2 books). Moscow, Mashinostroenie, 2003, 616 p.

  9. Grigor’ev V.A. Eksperimental’noe opredelenie drossel’noi kharakteristiki i normal’nykh znachenii parametrov TRDD (Experimental determination of throttle characteristics and normal values of turbojet parameters). performance of compressor airfoils. Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet im. S.P. Koroleva, 2003, 35 p.

  10. JSC Motor Sich, http://www.motorsich.com/eng/

  11. Ivchenko AI-25. From Wikipedia, the free encyclopedia. URL: https://en.wikipedia.org/wiki/Ivchenko_AI-25

  12. Kuz’michev V.S., Ostapyuk Y.A., Tkachenko A.Y. et al. Comparative Analysis of the Computer-Aided Systems of Gas Turbine Engine Designing. International Journal of Mechanical Engineering and Robotics Research, 2017, vol. 6, no. 1, pp. 28-35. DOI: 10.18178/ijmerr.6.1.28-35

  13. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi-target uncertainty. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 7-15.

  14. Lamzin V.V. Research on space system realization condition indeterminations influence on performance factors dispersion. Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 53-65.

  15. Balyk V.M., Kulakova R.D., Khesin L.B. Modification of the design decisions in the statistical synthesis of the external characteristics of the aircraft. Aerospace MAI Journal, 2011, vol. 18, no. 2, pp. 31-40.

  16. Wheeler A.P.S., Sofia A., Miller R.J. The effect of leading-edge geometry on wake interactions in compressors. Journal of Turbomachinery, 2009, vol. 131, no. 4. DOI: 10.1115/1.3104617

  17. Curlett B.P. The aerodynamic effect of fillet radius in a low speed compressor cascade. NASA Technical Memorandum TM −105347, 1991, 48 p.

  18. Bunker R.S. The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 2009, vol. 131, no. 4. DOI: 10.1115/1.3072494

  19. Goodhand M.N., Miller R.J., Lung H.W. The sensitivity of 2D compressor incidence range to in-service geometric variation. ASME Turbo Expo: Turbine Technical Conference and Exposition (11–15 June 2012; Copenhagen, Denmark), 2012, vol. 8, pp. 159–170. DOI: 10.1115/GT2012-68633

  20. Elmstrom M.E., Millsaps K.T., Hobson G.V., Patterson J.S. Impact of nonuniform leading edge coatings on the aerodynamic Journal of Turbomachinery, 2011, vol. 133, no. 4. DOI: 10.1115/1.3213550

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI