Impact damages effect assessment on compressive strength of integral panels from polymer composite materials

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-78-91

Аuthors

Bezzametnov O. N.1*, Mitryaikin V. I.1**, Khaliulin V. I.1***, Markovtsev V. A.2****, Shanygin A. N.3*****

1. Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
2. National Institute of Aviation Technology, NIAT, 34, Vrach Mikhailov str., Ulyanovsk, 432057, Russia
3. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: bezzametnovoleg@mail.ru
**e-mail: vmitryaykin@bk.ru
***e-mail: pla.kai@mail.ru
****e-mail: niat@mv.ru
*****e-mail: alexander.shanygin@tsagi.ru

Abstract

The presented study is focused on the experimental study of impact resistance of integral polymer composite panels with lengthwise framing. In the course of the work, the character of impact damages in the area of the skin attachment and stringer under the impact of various kinds of the impact energy was studied, and these damages effect on the panels residual carrying capacity was evaluated. The effect of adding the extra layers of polyethylene plastic with higher energy absorbing properties on the panels’ impact resistance was estimated as well. Samples of panels were fabricated from the two types of materials, namely carbon fiber-reinforced polymer (type C) and a combination of carbon fiber reinforced polymer and polyethylene (type D).

A testing methodology selection substantiation was performed in the course of this work. An ins ert with cuttings for integral panel for longitudinal framework was fabricated for the testing with standard rigging. From the incomplete destruction conditions of the integral panels, the impact energy was of 2 and 10 J. The impact is being inflicted in the zone of the skin reinforcement to the stringer, since the damage in this area should lead to a greater strength reduction of the panel at the post-impact loading. Tests of integral carbon reinforced plastic panels revealed no visual damages on the panels at the impact of 2 J. The impact of 10 J leads to the partial internal and interlayer damages from the opposite side in the place of the skin transition to the stringer.

Static tests on longitudinal compression were conducted after the impact resistance test to determine residual strength of the panels. As far as the samples are of various shape and cross-section area, comparison was being made by the absolute maximum loading val ue, sustained by the sample at the longitudinal compression. The impact of 2 J did not affect practically the strength properties of the samples. Maximum force reduction while all type of samples destruction is no more than 10%. The impact of 10 J leads to drastic damages of all types of panels. The residual strength of integral carbon panels is 63%, while it is only 60% for the combined panels.

The results of the experiment demonstrated that combination of materials with different properties, such as carbon fiber-reinforced polymer and polyethylene, may increase impact resistance of the part as it prevents crack growth and fracture of the material from the damage initiation area on the skin to the frame.

Keywords:

polymer composite materials, integral structures, impact, damage, strength of integral panels

References

  1. Kablov E.N. Aviatsionnye materialy i tekhnologii, 2015, no. 1(34), pp. 3-33.
  2. Kablov E.N. Vestnik Rossiiskoi akademii nauk, 2012, vol. 82, no. 6, pp. 520-530.
  3. Erasov V.S., Yakovlev N.O., Nuzhnyi G.A. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 440-448.
  4. Borshchev A.V., Gusev Yu.A. Aviatsionnye materialy i tekhnologii, 2014, no. S2, pp. 34-38.
  5. Okol’nikova G.E., Bronnikov D.A., Shchedrin N.I. Sistemnye tekhnologii, 2018, no. 2(27), pp. 60-64.
  6. Bogolyubov V.S. et al. Tekhnologiya proizvodstva izdelii i integral’nykh konstruktsii iz kompozitsionnykh materialov v mashinostroenii (Technology of composite material products and integral constructions manufacturing in machine building), Moscow, Gotika, 2003, 516 p.
  7. Klimakova L.A., Komissar O.N., Polovyi A.O. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (27—30 August 2003; Moscow), pp. 646-651.
  8. Klimakova L.A., Komissar O.N. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov”, 2001, Moscow, pp. 63-72.
  9. Khmel’nitskii Ya.A. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (6—8 October 2015; Moscow), pp. 340-346.
  10. Khaliulin V.I., Batrakov V.V. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (6—8 October 2015; Moscow), pp. 43-49.
  11. Shabalov A.V., Khaliulin V.I. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (6—8 October 2015; Moscow), pp. 174-180.
  12. Rach V.A., Tarasov Yu.M., Voskoboinikov V.N., Malkov I.V. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov”, 2005, Moscow, pp. 425-429.
  13. Khaliulin V.I., Batrakov V.V. Tekhnologiya proizvodstva izdelii iz kompozitov: tekhnologiya integral’nykh konstruktsii (Technology of composite products production: technology of integral structures), Kazan, KNITU-KAI. 2018, 192 p.
  14. Boichuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Vse materialy. Entsiklopedicheskii spravochnik, 2012, no. 10, pp. 38-44.
  15. Fegenbaum Yu.M., Dubinskii S.V., Bozhevalov D.G., Sokolov Yu.S., Metelkin E.S., Mikolaichuk Yu.A., Shapkin V.S. Obespechenie prochnosti kompozitnykh aviatsionnykh konstruktsii s uchetom sluchainykh ekspluatatsionnykh udarnykh vozdeistvii (Strength ensuring of composite aircraft structures with account for random operational shock effects), Moscow, Tekhnosfera, 2018, 506 p.
  16. Serenson S.V., Zaitsev G.P. Nesushchaya sposobnost tonkostennykh konstruktsii iz armirovannykh plastikov s defektami (Bearing capacity of thin-walled structures from reinforced plastics with defects), Kiev, Naukova dumka, 1982, 296 p.
  17. Bezzametnov O.N., Mitryaykin V.I., Khaliulin V.I., Statsenko E.O. Investigation of Composite Materials Impact Damage by a Computer Tomography. Key Engineering Materials, 2019, vol. 822, ðp. 362–370. DOI: 10.4028/www.scientific.net/KEM.822.362
  18. Kolesnikov Yu.V., Morozov E.M. Mekhanika kontaktnogo razrusheniya (Mechanics of contact destruction), Moscow, LKI, 2013, 224 p j.compositesb.2015.04.022
  19. Romano F., Di Caprio F., Mercurio U. Compression after Impact Analysis of Composite Panels and Equivalent Hole Method. Procedia Engineering, 2016, vol. 167, pp. 182–189. DOI: 10.1016/ j.proeng.2016.11.686
  20. Singh H., Hazarika B.Ch., Dey S. Low velocity impact responses of functionally graded plates. Procedia Engineering, 2017, vol. 173, pp. 264–270. DOI: 10.1016/j.proeng.2016.12.010
  21. Kuróun A., óenel M., Enginsoy H.M. Experimental and numerical analysis of low velocity impact on a preloaded composite plate. Advances in Engineering Software, 2015, vol. 90, pp. 41–52. DOI: 10.1016/ j.advengsoft.2015.06.010
  22. Sidorov I.N., Mitryaikin V.I., Gorelov A.V., Shabalin L.P. Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 2019, vol. 21, no. 3, pp. 343-350. DOI: 10.15507/ 2079-6900.21.201903.343-352
  23. Tan K.T., Watanabe N., Iwahori Y. Finite element model for compression after impact behavior of stitched composites. Copmposites Part B: Engineering, 2015, vol. 79, pp 53-60. DOI: 10.1016/
  24. Poliansky V.V., Nesterov V.A. Estimation of reliability alteration for airframe configuration with mechanical damage. Aerospace MAI Journal, 2009, vol. 16, no. 5, pp. 32-39.
  25. Nebelov E.V., Pototskii M.V., Rodionov A.V., Gorskii A.N. Mechanism of damage propagation to the propeller blades of composite materials with exposed damaging elements. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 26-31.
  26. Bezzametnov O.N., Mitryaikin V.I., Khaliulin V.I. Low-speed impact testing of various composites. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 216-229. DOI: 10.34759/vst-2019-4-216-229

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI