Ensuring dynamic state of straight waveguide paths at heating by supports arrangement

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-92-105

Аuthors

Kudryavtsev I. V.

Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russia

e-mail: ikudryavcev@sfu-kras.ru

Abstract

Waveguide ducts are the integral units of microwave devices in space technology, and, besides the specified radio-technical parameters, they require ensuring their dynamic state with account for heating. One of the most important parameters determining the dynamic behavior of the extended waveguide structure under the combined impact of forced vibrations and heating is the values of the first natural vibration frequency and the critical temperature of stability loss. The presented work considers the issues of controlling the first natural vibration frequency and critical temperature as applied to the spacecraft straight waveguide ducts by the developed technique of the supports arrangement substantiated choice. The author suggests the techniques for solving direct and inverse problems, allowing both determining the first natural vibration frequency and critical temperature at the specified fixations, and selecting the structure of the supports arrangement, which will ensure these parameters of the waveguide dynamic state. The example of the straight waveguide duct computation and comparative numerical calculations, which demonstrated good convergence of the results, were performed with Ansys software. The developed techniques are of a general character, and they may be employed at both checking calculation and developing any kind of straight beam structures for controlling their dynamic state by the supports arrangement.

Keywords:

spacecraft waveguides, natural vibrations and stability of the waveguide at heating, support coefficients normalizing, analytical selection of waveguide support, verification by finite element method

References

  1. Voskresenskii D.I., Gostyukhin V.L., Maksimov V.M., Ponomarev L.I. Ustroistva SVCH i antenny, Moscow, Radiotekhnika, 2016, 560 p.
  2. Khayrnasov K.Z. Modeling and thermal analysis of electronic devices on board space vehicles. Aerospace MAI Journal, 2013, vol. 20, no. 3, pp. 134-138.
  3. Vorobiev I.N., Grishanina T.V., Shklyarchuk F.N. The nonlinear vibrations of the satellite with an elastic beam loaded by solar heating. Aerospace MAI Journal, 2012, vol. 19, no. 3, pp. 160-169.
  4. Kudryavtsev I.V., Minakov A.V., Mityayev A.Ye. Problemy mashinostroyeniya i nadezhnosti mashin, 2019, no. 4, pp. 29-37.
  5. Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N. Journal of Siberian Federal University. Engineering & Technologies, 2012, no 2, pp. 205-219.
  6. Il’in M.M., Kolesnikov K.S., Saratov Yu.S. Mekhanika v tekhnicheskom universitete. T.4. Teoriya kolebanii, Moscow, MGTU im. N.EH. Baumana, 2001, 272 p.
  7. Alfutov N.A., Kolesnikov K.S. Mekhanika v tekhnicheskom universitete. T.3. Ustoichivost’, Moscow, MGTU im. N.EH. Baumana, 2003, 256 p.
  8. Biderman V.L. Teoriya mekhanicheskikh kolebanii, Moscow, RKHD, 2009, 414 p.
  9. Babakov I.M. Teoriya kolebanii, Moscow, Drofa, 2004, 591 p.
  10. Blekhman I.I. Vibratsionnaya mekhanika, Moscow, Fizmatlit, 1994, 400 p.
  11. Doev V.S. Poperechnye kolebaniya balok, Moscow, KNORUS, 2016, 412 p.
  12. Panovko Ya.G. Vvedenie v teoriyu mekhanicheskikh kolebanii, Moscow, Lenand, 2017, 256 p.
  13. Strelkov S.P. Vvedenie v teoriyu kolebanii, St. Petersburg, Lan’, 2021, 440 p.
  14. Magnus K. Kolebaniya, Moscow, Mir, 1982, 304 p. 15. Timoshenko S.P., Yang D.Kh., Uiver U. Kolebaniya
  15. v inzhenernom dele, Moscow, Mashinostroenie, 1985, 472 p.
  16. Timoshenko S.P. Prochnost’ i kolebaniya ehlementov konstruktsii, Moscow, Nauka, 1975, 704 p.
  17. Khazanov Kh.S. Mekhanicheskie kolebaniya sistem s raspredelennymi parametrami, Samara, SGAU, 2002, 80 p.
  18. Yablonskii A.A., Noreiko S.S. Kurs teorii kolebanii, St. Petersburg, Lan’, 2003, 256 p.
  19. Klaf R., Penzien Dzh. Dinamika sooruzhenii, Moscow, Stroiizdat, 1979, 320 p.
  20. Smirnov A.F., Aleksandrov A.V., Lashchenikov B.Ya., Shaposhnikov N.N. Stroitel’naya mekhanika. Dinamika i ustoichivost’ sooruzhenii, Moscow, Stroiizdat, 1984, 414 p.
  21. He J., Fu Z. Modal Analysis, Delphi, Butterworth-Heinemann, 2001, 305 p.
  22. Beards C.F. Engineering vibration analysis with application to control systems, London: Edward Arnold, 1995, 426 p.
  23. Barez F. Dynamic systems vibration and control, San Jose, SJSU, 2018, 283 p.
  24. Benaroya H., Nagurka M., Han S. Mechanical vibration, London, CRC Press, 2017, 579 p.
  25. Genta G. Vibration dynamics and control, Torino, Springer, 2009, 806 p.
  26. Magrab E.B. Vibrations of elastic systems, New York, Springer, 2012, 489 p.
  27. Timoshenko S.P. Vibration problems in engineering, New York, D.Van Nostrand company, 1937, 476 p.
  28. Moaveni S. Finite element analysis. Theory and application with Ansys, Croydon, Pearson, 2015, 928 p.
  29. Stolarski T., Nakasone Y., Yoshimoto S. Engineering analysis with Ansys Software, Kidlington, Butterworth-Heinemann, 2018, 550 p.
  30. Lee H.H. Finite element simulations with Ansys Workbench 18, Taiwan, SDC Publication, 2018, 610 p.
  31. Birger I.A. Prochnost’, ustoichivost’, kolebaniya. T.3. Moscow, Mashinostroenie, 1988, 567 p.
  32. Blevins R.D. Formulas for dynamics, acoustics and vibration, Chichester, John Wiley & Sons Ltd, 2016, 448 p.
  33. Feodos’ev V.I. Soprotivlenie materialov, Moscow, MGTU, 1999, 592 p.
  34. Mityaev A.E., Kudryavtsev I.V., Khomutov M.P., Brungardt M.V., Rabetskaya O.I. Mutual influence of the supports stiffness and the first natural frequency at bending vibrations of a spring-hinged beam, IOP Conference Series: Materials Science and Engineering, 2021, vol. 1155, no. 012099, DOI:10.1088/1757-899X/1155/1/012099.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI