Thermal conductivity research of the aircraft heat-insulating skin under flight conditions

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-118-130

Аuthors

Maskaykin V. A.*, Makhrov V. P.**

*e-mail: vladimir.maskaykin@mail.ru
**e-mail: v_machrov@rambler.ru

Abstract

The theoretical studies considered in this work reflect the development of thermal insulation protective means applied on the aircraft. The purpose of the work consists in studying the possibilities of enhancing thermal insulation characteristics of the aircraft being operated under extreme temperatures. Namely, the article tackles the option of a multilayer structure suggested as a thermal insulator for its application on the aircraft. This structure consists of the composite material layers, porous material and aluminum-magnesium alloy layers. Theoretical study of heat exchange of this structure and existing thermal insulating structures employed on the aircraft is being conducted for comparison and evaluation of the considered multilevel structure application effectiveness.

The extreme temperatures are being determined in this work from the aircraft flight mode conditions, at which these excessively high temperatures occur.

The thermal conductivity studies of the proposed multilayer structure and conventional heat-insulating structures considered in this work were being performed numerically by the finite-difference method.

The numerical study results of the unsteady thermal conductivity revealed that a multilayer structure was twelve times superior in thermal insulation to all other existing thermal insulation structures considered in the work. Besides, the results of studying thermal conductivity of the structures under consideration demonstrate that:

  • The layers of materials in the element do not operate separately from each other, but they all operate in the common heat exchange system;
  • The monotony of the temperature distribution in the elements depends on the of the materials’ thermal conductivity coefficients ratio.

The results of this work may be recommended for application in real designs of the state-of-the-art aircraft.

Keywords:

multilayer thermal insulation structure, composite polymer materials, porous materials, thermal insulation, non-stationary thermal conductivity, thermal conditioning systems

References

  1. Shilkin O.V., Kishkin A.A., Zuev A.A., Delkov A.V., Lavrov N.A. Passive cooling system designing for a spacecraft onboard complex. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 96-106. DOI: 10.34759/vst-2021-2-96-106
  2. Babashov V.G., Varrik N.M. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 3(21). URL: https://materialsnews.ru/plugins/content/ journal/uploads/articles/pdf/201.pdf
  3. Attalla M. Experimental investigation of heat transfer and pressure drop of SiO2/water nanofluid through conduits with altered cross-sectional shapes. Heat and Mass Transfer, 2019, vol. 55, pp. 3427–3442. DOI: 10.1007/s00231-019-02668-0
  4. Zhang Y., Zhang X., Li M. et al. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat and Mass Transfer, 2019, vol. 55, pp. 3117-3131. DOI: 10.1007/ s00231-019-02647-5
  5. Bukichev Y.S., Bogdanova L.M., Spirin M.G., Shershnev V.A., Shilov G.V., Dzhardimalieva G.I. Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: synthesis, microstructure and properties. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 224-237. DOI: 10.34759/vst-2021-2-224-237
  6. Maskaikin V.A., Makhrov V.P. Teplovye protsessy v tekhnike, 2021, vol. 13, no. 5, pp. 230-237.
  7. Prokof’ev M.V., Zhuravlev S.Y. The study of nano-dispersed graphite particles size and shape effect on electrical conductance and thermal resistance of carbonaceous coating. Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 167-174.
  8. Sytyi Yu.V., Sagomonova V.A., Nikolaeva M.F. et al. Patent RU 2465145 C1, 27.10.2012.
  9. Aviatsionnye materialy: spravochnik v 12 t. T. 9. Teplozashchitnye, teploizolyatsionnye i kompozitsionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiya (Aviation materials: handbook in 12 vols. Vol. 9. Heat protection, thermal insulation and composite materials, high-temperature non-metallic coatings), Moscow, VIAM, 2011, p. 31.
  10. Wierzbicki M., Miller K.B., Fernando J.A. Multi-layer fire protection material. Patent US20110126957A1, 02.06.2011.
  11. Horrocks A., Anand S.C., Hill B.J. Fire and heat resistant materials. Patent GB2279084A, 21.12.1994.
  12. Shumate M.W., Stacy J.W. Reinforced Insulation Product and System Suitable for Use in an Aircraft. Patent US7278608B2, 09.10.2007.
  13. Movsesian S., Patel J.D., Workman T., Deramo M.A. Modularized insulation, systems, apparatus, and methods. Patent US7083147B2, 01.08.2006.
  14. Hosaain Z., Borumand K., Sharma N. et al. Aircraft insulation systems and methods. Patent EP2236412B1, 31.03.2010.
  15. Plity iz mineral’noi vaty na sinteticheskom svyazuyushchem teploizolyatsionnye. Tekhnicheskie usloviya. GOST 9573-2012 (Thermal insulating plates of mineral wool on synthetic binder. Specifications. State Standard 9573-2012), Moscow, Standartinform, 2019, 12 p.
  16. Izdeliya teploizolyatsionnye iz steklyannogo shtapel’nogo volokna. Tekhnicheskie usloviya. GOST 10499-95 (Heat insulating products made of glass staple fiber. Specifications. State Standard 10499-95), Moscow, Standartinform, 1996, 12 p.
  17. Plity teploizolyatsionnye iz penoplasta na osnove rezol’nykh fenoloformal’degidnykh smol. Tekhnicheskie usloviya. GOST 20916-87 (Foam plastic heat-insulating slabs based on resol phenol-formaldehyde resins. Specifications. State Standard 20916-87), Moscow, Standarty, 1987, 9 p.
  18. Kerber M.L. Polimernye kompozitsionnye materialy. Struktura. Svoistva. Tekhnologii (Polymer composite materials. Structure. Features. Technologies), St. Petersburg, Professiya, 2008, 560 p.
  19. Pichulin V.S., Smirnova G.A. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published. php?ID= 29441
  20. Lykov A.V. Teoriya teploprovodnosti (Theory of thermal conductivity), Moscow, Vysshaya shkola, 1967, 600 p.
  21. Berkovskii B.M., Nogotov E.F. Raznostnye metody issledovaniya zadach teploobmena (Difference methods for studying heat transfer problems), Moscow, Nauka i tekhnika, 1976, 144 p.
  22. Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti (Difference methods for solving heat conduction problems), Tomsk, TPU, 2007, 172 p.
  23. Samarskii A.A., Vabishchevich P.N Vychislitel’naya teploperedacha (Computational heat transfer), Moscow, Editorial URSS, 2003, 785 p.
  24. Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesei i kompozitsionnykh materialov (Thermal conductivity of mixtures and composite materials), Leningrad, Energiya, 1974, 264 p.
  25. Dul’nev G.N., Novikov V.V. Protsessy perenosa v neodnorodnykh sredakh (Transfer processes in heterogeneous environments), Leningrad, Energoatomizdat, 1991, 247 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI