Numerical simulation technique for working blades operational damages of turbojet low-pressure compressor rotor

Aeronautical and Space-Rocket Engineering

DOI: 10.34759/vst-2021-4-131-150


Sirotin N. N., Nguyen T. S.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The ingress of foreign objects or birds into the engine, interacting with structural elements of gas turbine engines, leads to the compressor blades damaging and, depending on the degree of the damage, contributes to the incidents or accidents occurrence in the process of gas turbine engines exploitation. Due to the leading edge damaging of the compressor working blade, the profile chord reduction and radius changing of the entry edge occurs, which finally leads to the damaged blade flow-around by air character changing.

The article presents computations for determining the compressor characteristics changing, its gas-dynamic stability margin and the mass flow while operating in the engine system under the impact of damages in the form of dints. The NUMECA Fine/Turbo CFD code, which realizes the numerical solution of the Navier-Stokes equations averaged by Reynolds for computing the three-dimensional air flow in the compressor, is employed for this problem solving.

The commercial NUMECA Fine/Turbo software product allows quantifying the impact of damage on the compressor operation quality.

Damage in the form of a dint leads to the reduction of local values of pressure increase, efficiency and gas-dynamic stability margin of all compressor operation modes. The gas-dynamic stability margin lowering increases with the blades chord length decreasing. The modes, at which the gas-dynamic stability decrease takes maximum values occur at npr = 80%, 85%.

The dint curvature affects the quality of the compressor, that is, it leads to the gas-dynamic stability margin decrease due to a change in the character of the damaged blade flow-around by the air.

An increase in the number of damaged blades leads to a decrease in the compressor gas-dynamic stability. In the modes when npr = 80%, and npr = 85%, the gas-dynamic stability decreases significantly.

With a sequential arrangement of damaged blades, the gas-dynamic stability of the compressor decreases, compared to the case of inconsistent arrangement due to the turbolization of the boundary layer intensity increase.


compressor, rotor rotational frequency, air flow rate, gas-dynamic stability margin, dint


  1. Dolbeer R., Wright S. Wildlife Strikes to Civil Aircraft in the United States 1990–2013. Federal aviation administration national wildlife strike database. Report No. 20, 2014.
  2. Sirotin N.N., Marchukov E.Yu., Novikov A.S. Povrezhdaemost’ i rabotosposobnost’ aviatsionnykh GTD: Spravochnik (Damageability and operability of aircraft turbojet engines. Handbook), Moscow, Nauka, 2020, 551 p.
  3. Aviatsionnye pravila. Ch. 33. Normy letnoi godnosti dvigatelei vozdushnykh sudov (Airworthiness standards for aircraft engines), Moscow, Aviaizdat, 2012, 78 p.
  4. Cumpsty N.A. Compressor aerodynamics. Krieger Pub Co, 2nd edition, 2004, 552 p.
  5. Stechkin B.S., Kazandzhan P.K., Alekseev L.P. et al. Teoriya reaktivnykh dvigatelei. Lopatochnye mashiny (Theory of jet engines. Blade machines), Moscow, Oborongiz, 1956, 543 p.
  6. Kholshchevnikov K.V., Emin O.N., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aviation blade machines), Moscow, Mashinostroenie, 1986, 432 p.
  7. Avgustinovich V.G., Shmotin Yu.N., Sipatov A.M. et al. Chislennoe modelirovanie nestatsionarnykh yavlenii v gazoturbinnykh dvigatelyakh (Numerical modeling of unsteady phenomena in gas turbine engines), Moscow, Mashinostroenie, 2005, 523 p.
  8. Baturin O.V., Popov G.M., Goryachkin E.S., Smirnova Yu.D. Trudy MAI, 2015, no. 82. URL: http: //
  9. Martirosyan A.A., Mileshin V.I., Druzhinin Ya.M., Kozhemyako P.G. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2019, no. 2(125), pp. 115-130. DOI: 10.18698/0236-3941-2019-2-115-130
  10. Wilcox D.C. Turbulence Modelling for CFD. 3rd Edition. DCW Industries, 2006, 522 p.
  11. Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, vol. 26, no. 11, pp. 1299-1310. DOI: 10.2514/3.10041
  12. Wilcox D.C. Dilatation dissipation corrections for advanced turbulence models. AIAA Journal, 1992, vol. 30, no. 11, pp. 2639-2646. DOI: 10.2514/3.11279
  13. Chima R.V. Ñalculation of tip clearance effects in a transonic compressor rotor. Journal of Turbomachinery, 1998, vol. 120, no. 1, pp. 131-140. DOI: 10.1115/ 1.2841374
  14. White F.M. Viscous fluid flow. 3rd edition. Tata Mcgraw Hill, 2011, 652 p.
  15. Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 3rd edition. Springer, 2009, 748 p.
  16. Molchanov A.M., Shcherbakov M.A., Yanyshev D.S., Kuprikov M.Yu., Bykov L.V. Postroenie setok v zadachakh aviatsionnoi i kosmicheskoi tekhniki (Meshes construction in problems of aviation and space technology), Moscow, MAI, 2013, 260 p.
  17. Zrelov V.A. Otechestvennye gazoturbinnye dvigateli. Osnovnye parametry i konstruktivnye skhemy (Domestic gas turbine engines. Basic parameters and design 21. Sirotin N.N., Nguyen T.S. Materialy XXV schemes), Moscow, Mashinostroenie, 2005, pp. 196-207, 223.
  18. Nesterenko V.G. Atlas skhemno—konstruktivnykh reshenii uzlov VRD (Atlas of schematic and constructive solutions of turbojet engines), Moscow, MAI, 1991, 88 p.
  19. Mitrofanov A.A. Improving the efficiency of axial compressors using control of the flow blades. Aerospace MAI Journal, 2011, vol. 18, no. 2, pp. 72-82.
  20. Sirotin N.N., Nguyen T.S. Materialy VIII Vserossiiskoi nauchnoi konferentsii «Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred» (Moskva; 18–19 December 2018), Moscow, IPRIM, 2018, pp. 96-100.
  21. Sirotin N.N., Nguyen T.S. Materialy XXV mezhdunarodnogo simpoziuma im. A.G. Gorshkova (Vyatichi, 18-22 March 2019) «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred», Moscow, TRP, 2019, vol. 2. pp. 126-127.
  22. Mileshin V.I., Semenkin V.G. Computational study of reynolds number effect on the typical first stage of a high-pressure compressor. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 86-98. — informational site of MAI

Copyright © 1994-2024 by MAI