Vibration diagnostics of gas turbine engines bearing assemblies technical condition with rhythmograms and scatterograms

Aeronautical and Space-Rocket Engineering

DOI: 10.34759/vst-2021-4-151-162


Balakin D. A.1*, Zubko A. I.2**, Zubko A. A.3***, Shtykov V. V.1****

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Lyulka Experimental Design Bureau, branch of the United Engine Corporation – Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The introduction to the article is focused on the problem of early diagnostics of the aircraft gas turbine engine bearings. Particularly, the gas turbine engine bearing functioning period disrupts namely at its early developmental stage, which does not always succumbs to estimation by the conventional methods. The authors suggest employing the apparatus widely known in medicine practice to analyze the occurring quasi-periodicity, namely rithmogram and scatterogram.

A rithmogram plotting is being realized based on the developed technique. The technique in its turn bases on the correlation processing principles, wavelet transform theory and Hermite transform. Briefly, the gist of the technique consists of the following: mutual correlation function of the studied signal of the bearing and reference function is being computed. The reference function is being plotted based on Hermite transform, and represents mirror reflection of the impulse characteristic of the complex quasi-matched filter. Wavelet processing principles application (scaling parameter variation) allows refining positions of the correlation function peaks. After the cross-correlation function threshold processing we obtain rhythmogram and scatterogram of the signal under study.

Further, the article considers processing of real signals of gas turbine bearing. Spectral and statistical analysis of the obtained rhythmograms and scatterograms is being performed. Inferences are being drawn on the state of the bearings under study.

Conclusion considers further prospects of the rhythmograms and scatterograms application as diagnostics tools for aircraft gas turbine engines.


vibration diagnostics of rotor bearings, Hermite transformation, rhythmogram, scatterogram, quasi-periodicity


  1. Fentaye A.D., Baheta A.T., Gilani S.I., Kyprianidis K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace, 2019, vol. 6, no. 7, p. 83. DOI: 10.3390/aerospace6070083
  2. Hanachi H. Gas Turbine Engine Performance Estimation and Prediction. Thesis for PhD. Ottawa, Ontario, Carleton University, 2015, 133 p. DOI: 10.13140/RG.2.1.2931.2488
  3. Tang G., Pang B., Tian T., Zhou C. Fault diagnosis of rolling bearings based on improved fast spectral correlation and optimized random forest. Applied sciences, 2018, vol. 8, no. 10. DOI: 10.3390/ app8101859
  4. Liu H., Wang X., Lu C. Rolling bearing fault diagnosis under variable conditions using hilbert-huang transform and singular value decomposition. Mathematical Problems in Engineering. 2014. Special Issue. DOI: 10.1155/2014/765621
  5. Zubko A.I. Perspective vibroacoustics diagnostic complex for aircraft gas-turbine engines bearing assemblies. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 47-55.
  6. Danilin A.I., Gretskov A.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 6, pp. 170–177. DOI: 10.18287/2541-7533-2016-15-3-170-177
  7. Danilin A.I., Gretskov A.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 6, pp. 178–188. DOI: 10.18287/2541-7533-2016-15-3-178-188
  8. Barkova N., Barkov A., Grishchenko D. Vibration diagnjstics of equipment units with gas turbine engines. Vibroengineering PROCEDIA, 2019, vol. 25, pp. 89-94. DOI: 10.21595/vp.2019.20723
  9. Fabry S., Češkovič M. Aircraft gas turbine engine vibration diagnostic. Magazine of Aviation Development, 2017, vol. 5, no. 4, pp. 24-28. DOI: 10.14311/ MAD.2017.04.04
  10. Shabaev V.M., Kazantsev A.S., Leont’ev M.K. et al. Kontrol’. Diagnostika, 2007, no. 11, pp. 18-24.
  11. Sieciński S., Kostka P.S., Tkacz E.J. Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms on healthy volunteers. Sensors, 2020, vol. 20, no. 16, pp. 4522. DOI: 10.3390/s20164522
  12. Kulaichev A.P. Komp’yuternaya elektrofiziologiya i funktsional’naya diagnostika (Computer electrophysiology and functional diagnostics), Moscow, NITs INFRA-M, 2019, 469 p.
  13. Balakin D.A., Shtykov V.V. Tsifrovaya obrabotka signalov, 2018, no. 3, pp. 59-62.
  14. Martens J-B. The Hermite Transform — Theory. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, vol. 38, issue 9, pp. 1595-1606. DOI: 10.1109/ 29.60086
  15. Semenova A.S., Zubko A.I. Studying technical condition of the interrotor bearing with the SP180-M vibratory-diagnostic test bench after passing life tests. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 126-138.
  16. Balakin D.A., Shtykov V.V. Zhurnal radioelektroniki, 2014, no. 9. URL: text.pdf
  17. Balakin D.A., Shtykov V.V. Using rhythmograms to diagnose mechanical systems. Journal of Physics: Conference Series. APITECH-2019, vol. 1399, issue 4, pp. 044027. DOI: 10.1088/1742-6596/1399/4/044027
  18. Gavrilova E.A. Sport, stress, variabelnost (Sport, stress, variability), Moscow, Sport, 2015, 168 p.
  19. Antipov O.I., Kislyar A.S. Ogarev-Online, 2016, no. 15(80). URL:
  20. Loboda I. Neural Networks for Gas Turbine Diagnosis. Artificial Neural Networks — Models and Applications, 2016. DOI: 10.5772/63107 — informational site of MAI

Copyright © 1994-2024 by MAI