Shock interaction simulation of sprayed particles with the part surface while plasma coatings forming

Machine-building Engineering and Machine Science


DOI: 10.34759/vst-2021-4-257-266

Аuthors

Kovalev A. A.*, Krasko A. S.**, Sidorov P. A.***

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: kovalevarta@gmail.com
**e-mail: krasko_as@mail.com
***e-mail: sidorovpa@student.bmstu.ru

Abstract

This article considers the problem of thermal spray coatings adhesion strength assessing to the part surface. Performing numerical modeling of heating and acceleration processes of the sprayed material particles, as well as their collision with the base surface of the set micro-relief employing the ANSYS CFD Premium software is being suggested as the problem solution. The plasma spraying process is being considered as an example.

At the beginning, the article performs the analysis of the literature related to the problem of adhesion strength determining of gas-thermal coatings, obtained by the plasma spraying, with the base surface. The rationale for the need to model the sprayed material particles transfer and collision processes with the base surface is rendered.

The work separates out the stages and general approaches to the plasma spraying process modeling. The main process parameters are being defined, and description of the plasma jet outflow from the nozzle with the flow of particles being sprayed onto the base, is being presented. The curves of the spraying temperature and particles velocity dependency on time were plotted. Comparison of the obtained values with the experimental data is being performed.

Simulation of a single sprayed particle collision with the base at various combinations of temperature and the particle velocity at the moment of the particle approach to the base surface is performed in the work. The micro-relief geometry and size are being determined herewith. As the result, various particle shapes after collision and the value of the specific contacting area for each case under consideration were obtained. Finally, a qualitative assessment of the interaction between a particle of the sprayed material and the sprayed surface is presented. The most optimal combination of the temperature and particle velocity is identified.

Keywords:

plasma spraying, functional coatings, technological modes of spraying, numerical modeling, shock interaction, specific contacting surface

References

  1. Kalita V.I., Komlev D.I. Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma coatings with nanocrystalline and amorphous structure), Moscow, Lider M, 2008, 388 p.
  2. Kudinov V.V., Bobrov G.V. Nanesenie pokrytii napyleniem. Teoriya, tekhnologiya i oborudovanie (Spray coating. Theory, technology and equipment), Moscow, Metallurgiya, 1992, 432 p.
  3. Khasui A., Morigaki O. Naplavka i napylenie (Surfacing and spraying), Moscow, Mashinostroenie, 1985, 240 p.
  4. Puzryakov A.F. Teoreticheskie osnovy tekhnologii plazmennogo napyleniya (Theoretical basics of plasma spraying technology), Moscow, MGTU im. N.E. Baumana, 2008, 360 p.
  5. Baldaev L.Kh. (ed) Gazotermicheskoe napylenie (Gas-thermal spraying), Moscow, Market DS, 2007, 344 p.
  6. Il’yushenko A.F., Shevtsov A.I., Okovityi V.A. Protsessy formirovaniya gazotermicheskikh pokrytii i ikh modelirovanie (Processes of thermal coatings forming and their modeling), Minsk, Belarusskaya nauka, 2011, 357 p.
  7. Alavi S., Passandideh-Fard M., Mostaghimi J. Simulation of Semi-Molten Particle Impacts Including Heat Transfer and Phase Change. Journal of Thermal Spray Technology, 2012, vol. 21, no. 6, pp. 1278–1293. DOI: 10.1007/s11666-012-9804-8
  8. Ramachandran C.S., Balasubramanian V., Anantha-padmanabhan P.V. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology. Journal of Thermal Spray Technology, 2011, vol. 20, no. 3, pp. 590-607. DOI: 10.1007/s11666-010-9604-y
  9. Bobzin K., Ote M., Knoch M.A., Alkhasli I. Macroscopic particle modeling in air plasma spraying. Surface & Coatings Technology, 2018, vol. 364, pp. 449-456. DOI: 10.1016/j.surfcoat.2018.07.056
  10. Nyle´n P., Hansbo A., Friis M. et al. Investigation of Particle In-flight Characteristics during Atmospheric Plasma Spraying of Yttria Stabilized ZrO2: Part 2. Modeling. Journal of Thermal Spray Technology, 2001, vol. 10, pp. 359–366. DOI: 10.1361/ 105996301770349448
  11. Stummer M., Enzinger N. CFD Simulation of Particle Movement during Atmospheric Plasma Spraying. 12th International Seminar «Numerical Analysis of Weldability» (23–26 September 2018; Graz University of Technology, Seggau, Austria). DOI: 10.3217/978-3-85125-615-4-42
  12. Zhang Y., Matthews S., Tran A.T.T., Hyland M. Effects of interfacial heat transfer, surface tension and contact angle on the formation of plasma-sprayed droplets through simulation study. Surface & Coatings Technology, 2016, vol. 307, pp. 807-816. DOI: 10.1016/j.surfcoat.2016.09.066
  13. Kovalev A.A., Krasko A.S. Problemy mashinostroeniya i nadezhnosti mashin, 2021, no. 3, pp. 31-39. DOI: 10.31857/S0235711921030081
  14. Sheludyak Yu.E., Kashporov L.Ya., Malinin L.A., Tsalkov V.N. Teplofizicheskie svoistva komponentov goryuchikh system (Thermo-physical properties of combustible systems components), Moscow, Informatsiya i tekhniko-ekonomicheskie issledovaniya, 1992, 184 p.
  15. Kuz’min V.I., Gulyaev I.P., Kornienko E.E. et al. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Klimovskie chteniya — 2016. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya» (20 October 2016; Sankt-Peterburg), St. Petersburg, Skifiya-print, 2016, pp. 309-316.
  16. Zinov’ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh. Spravochnoe izdanie (Thermophysical properties of materials at high temperatures. Reference edition), Moscow, Metallurgiya, 1989, 382 p.
  17. Kharlamov Yu.A., Borisov Yu.S. Avtomaticheskaya svarka, 2001, no. 6, pp. 19-26.
  18. Tillmann W., Hagen L., Schaak C. et al. Adhesion of HVOF-sprayed WC-Co coatings on 316L substrates processed by SLM. Journal of Thermal Spray Technology, 2020, vol. 29, pp. 1396-1409. DOI: 10.1007/s11666-020-01081-y
  19. Meghwal A., Anupam A., Murty B.S. et al. Thermal spray high-entropy alloy coatings: a review. Journal of Thermal Spray Technology, 2020, vol. 29, pp. 857–893. DOI: 10.1007/s11666-020-01047-0
  20. Mauer G., Vaben R., Sto#ver D. Plasma and particle temperature measurements in thermal spray: approaches and applications. Journal of Thermal Spray Technology, 2011, vol. 3, no. 20, pp. 391-406. DOI: 10.1007/s11666-010-9603-z
  21. Xue J., Huang M. Optimization of plasma spray process VIA orthogonal test design method, SVM, and improved PSO. International Journal of Materials, Mechanics and Manufacturing, 2017, vol. 5, no. 3, pp. 153-158. DOI: 10.18178/ijmmm.2017.5.3.308
  22. Lyphout C., Nyle´n P., Ostergren L.G. Adhesion strength of HVOF sprayed IN718 coatings. Journal of Thermal Spray Technology, 2012, vol. 21, pp. 86-95. DOI: 10.1007/s11666-011-9689-y
  23. Kovalev A.A., Konovalov D.P. Workpiece thermal deformations simulaiton occurring while holes drilling process. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 201-211.
  24. Kovalev A.A., Rogov N.V. Evaluation of quality indicator dispersion depending on technological process parameters. Aerospace MAI Journal, 2021, vol. 28, no. 1, pp. 175-186. DOI: 10.34759/vst-2021-1-175-186
  25. Ivanov I.E. Numerical simulation of multiphase flows with large volume fraction of dispersed phase. Aerospace MAI Journal, 2009, vol. 16, no. 2, pp. 62-70.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI