Aeronautical and Space-Rocket Engineering
DOI: 10.34759/vst-2022-1-36-47
Аuthors
e-mail: MitrofanovOV@mai.ru
Abstract
Stability loss of the thin skins under loads close to the operating level is allowed for the upper panels of the low-capacity aircraft wing-box. The article proposes an applied technique for determining optimal parameters of thin metal skins with account for the two levels of loading. At the first level, the problem of stability ensuring of a rectangular panel with a minimum margin is being considered. The relations of geometrically nonlinear optimal design problem of the panel under postbuckling behavior are being written for the second level of loading. The article presents also analytical relations explaining the place of the design methodology for the supercritical state in the general theory of optimal design of thin-walled aircraft structures. It considers the design technique, which accounts for the interrelation of the two above-said problems. The panel thickness and width were selected as the variables of the general optimization problem. It is noted, that the optimal design problem proposed in the article differs from the traditional options by the said features. The article presents the panel design techniques based on analytical solutions of geometrically nonlinear problems when considering various options of loading a thin rectangular panel with hinge support. For the cases of compression and shear, compact analytical relations for the optimum parameters determining, which can be recommended for use in the early stages of design when selecting design solutions, are obtained. The longitudinal compressive and shear flows impact at combined loading was considered. In this case, a general option of the optimal design methodology is presented. For the second level of loading, the article regards also various static strength criteria and presents corresponding analytical expressions for computing optimal width of the panel at compression and shear. To illustrate the technique, the article presents numerical examples of determining optimal thickness and width of metal panels in compression. Conclusions and possible variants of the practical use of the technique are presented. As an example, an option of determining optimal parameters of a multi-web flap is given.
Keywords:
postbuckling behavior, stability, rectangular metal panels, compression, shearReferences
-
Vol’mir A.S. Gibkie plastiny i obolochki (Flexible plates and shells), Moscow, Gostekhizdat, 1956, 419 p.
-
Avdonin A.S., Figurovskii V.I. Raschet na prochnost’ letatel’nykh apparatov (Calculation of the strength of aircraft), Moscow, Mashinostroenie, 1985, 440 p.
-
Banichuk N.V., Biryuk V.I., Seiranyan A.P. Metody optimizatsii aviatsionnykh konstruktsii (Methods of optimization of aircraft structures), Moscow, Mashinostroenie, 1989, 296 p.
-
Lizin V.T., Pyatkin V.A. Proektirovanie tonkostennykh konstruktsii (Designing thin-walled structures), Moscow, Mashinostroenie, 1994, 447 p.
-
Belous A.A., Pospelov I.I. Trudy TsAGI. Issue 1783, Moscow, Izdatel’skii otdel TsAGI, 1976, 36 p.
-
Andrienko V.M., Pospelov I.I. Proektirovanie i raschet na prochnost’ aviatsionnykh konstruktsii. Sbornik statei. Issue 2623, Moscow, Izdatel’skii otdel TsAGI, 1996, pp. 68-75.
-
Ierusalimskii K.M., Korneev A.N., Fomin V.P. Proektirovanie i raschet na prochnost’ aviatsionnykh konstruktsii. Sbornik statei. Issue 2628, Moscow, Izdatel’skii otdel TsAGI, 1997, pp. 21-28.
-
Dzyuba A.S., Eleonskii S.I., Matvienko Yu.G., Pisarev V.S. Prochnost’ konstruktsii letatel’nykh apparatov. Sbornik statei. Vol. 2782, Moscow, Izdatel’skii otdel TsAGI, 2018, pp. 7-9.
-
Chedrik V.V. Proektirovanie i raschet na prochnost’ aviatsionnykh konstruktsii. Sbornik statei. Issue 2632, Moscow, Izdatel’skii otdel TsAGI, 1998, pp. 62-66.
-
Nikiforov A.K., Chedrik V.V. Proektirovanie i raschet na prochnost’ aviatsionnykh konstruktsii. Sbornik statei. Issue 2628, Moscow, Izdatel’skii otdel TsAGI, 1997, pp. 47-53.
-
Merkulov I.E., Endogur A.I. Aviatsiya i kosmonavtika – 2017. Sbornik tezisov XVI Mezhdunarodnaya konferentsiya (20–24 November 2017; Moskva). Moscow, Lyuksor, 2017, pp. 48-49.
-
Selyugin S.V., Chekhov V.V. Proektirovanie i raschet na prochnost’ aviatsionnykh konstruktsii. Sbornik statei. Issue 2632. Moscow, Izdatel’skii otdel TsAGI, 1998, pp. 85-95.
-
Chekhov V.V. Prochnost’ konstruktsii letatel’nykh apparatov: sbornik tezisov nauchno-tekhnicheskoi konferentsii (31 May – 1 June 2018; Zhukovskii). Issue 2782, Moscow, Izdatel’skii otdel TsAGI, 2018, pp. 212-213.
-
Mitrofanov O.V. Composite material wing panel of minimal mass design considering supercritical skin response. Aerospace MAI Journal, 2002, vol. 9, no. 1, pp. 35-42.
-
Mitrofanov O.V. Proektirovanie nesushchikh panelei aviatsionnykh konstruktsii po zakriticheskomu sostoyaniyu (Design of load-bearing panels of aircraft structures according to the critical state), Moscow, MAI, 2020, 160 p.
-
Dzyuba A.S., Dudar’kov Yu.I., Levchenko E.A., Limonin M.V., Tsoi S.V., Yashutin A.G. Prochnost’ konstruktsii letatel’nykh apparatov: sbornik tezisov nauchno-tekhnicheskoi konferentsii (31 May – 1 June 2018; Zhukovskii). Issue 2782, Moscow, Izdatel’skii otdel TsAGI, 2018, p. 7.
-
Zichenkov M.Ch., Dzyuba A.S., Dubinskii S.V., Limonin M.V., Paryshev S.E., Pankov A.V. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2018, no. 11, pp. 87-105.
-
Balabukh L.I. Tekhnika vozdushnogo flota, 1937, no. 9, pp. 19-38.
-
Mitrofanov O. Definition of preferable thickness of metal cylindrical panels with mild camber based on post-buckling behavior due to compression. III International Conference of Young Scientists on Contemporary Problems of Materials and Constructions (24–28 August 2019, Ulan-Ude, Russian Federation). DOI: 10.1088/1757-899X/684/1/012017
-
Mitrofanov O. Design of rectangular sandwich panels with metal skins based on post-buckling state in compression and shear. III International Conference of Young Scientists on Contemporary Problems of Materials and Constructions (24–28 August 2019, Ulan-Ude, Russian Federation). DOI: 10.1088/1757-899X/684/1/012020
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |