Analysis and constructive methods for axial forces distribution optimization in turbojet engine to enhance the high-pressure rotor bearing sevice life

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-1-81-94

Аuthors

Malinovskii I. M.1*, Nesterenko V. G.**, Starodumov A. V.2***, Yusipov B. H.2****, Ivanov I. G.1*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Lyulka Desing Bureau, 13, Kasatkina str., Moscow, 129301, Russia

*e-mail: driven95@gmail.com
**e-mail: valerynesterenk@yandex.ru
***e-mail: andrey-star@yandex.ru
****e-mail: Usb83@mail.ru
*****e-mail: Faa2013@yandex.r

Abstract

Since its advent, the multimode military aviation evolution, both in Russia and in other countries, tends to expand the boundaries of aircraft flight characteristics. The impressive range of modern engines operating conditions for super-maneuverable modern aircraft fighters incessantly increases all types of loads on the load-bearing elements of turbojet bypass engines with an afterburner. The task of military aviation consists in the capability to operate under conditions of frequent and sharp operation modes changes, as well as ensure long term fault-free operation under the impact of maximum loads on the engine. Thus, the progress of aircraft engine building is impossible without enhancing the structure stability to the increasing loads, or, if possible, reducing the impact on the load bearing elements of the engine. The purpose of this work consists in studying methods for constructive reduction of axial forces acting on the high-pressure rotor bearings, and defining the most effective one. For this purpose, comparative analysis of various types of turbojet engines air systems was performed from the viewpoint of the axial forces balance. As the result of studying the load-bearing schemes and various structural solutions, the gas generator of the engine-prototype with the most effective air system was selected. The hydraulic design procedure of the air system was performed according to the presented technique. Computing of axial forces, acting in the engine-prototype at four different modes was performed on its basis. The computational results reveal that the axial force values acting on the high-pressure rotor bearing comes closer to their limits, acceptable for the required service life ensuring. Further, a comparative analysis of the axial forces distribution in the engine optimization techniques was conducted. This allowed selecting the most effective one, according to which measures on the axial pressures changing in the inter-disk cavity were proposed. This, in its turn, allowed obtaining tangible increase in the force, acting on the rear part of the high-pressure turbine disk necessary for the reduction of the resultant loading of the high-pressure bearing, without principal, laborious and costly structure changes, as well as significant increase in the cooling air consumption. This solution is optimal for the set problem of the bearing unloading from the axial forces, and will allow prolong the engine fault-free operation under conditions of maximum loading or sharp changes in the operating modes.

Keywords:

axial forces, high and low pressure rotors, angular contact bearing of high pressure rotor, labyrinth seal

References

  1. Zrelov V.A., Novikov D.K., Panin E.A. Formirovanie konstruktivnykh skhem GTD i raschet osevykh sil v turbokompressore (Formation of design schemes of the gas turbine engine and calculation of axial forces in the turbocharger), Samara, SGAU, 2006, 33 p.

  2. Kiselev Yu.V., Kiselev D.Yu. Dvigatel’ SAM 146. Ustroistvo osnovnykh uzlov (Engine SAM 146. The device of the main nodes), Samara, SGAU, 2014, 30 p.

  3. Inozemtsev A.A., Nikhamkin M.A., Sandratskii V.L. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok (Fundamentals of designing aircraft engines and power plants), Moscow, Mashinostroenie, 2008, vol. 2, 368 p.

  4. Nesterenko V.G., Lyubaturov A.M. Proektirovanie i raschet VRD (Design and calculation of VRD), Moscow, MAI, 1991, 73 p.

  5. Agul’nik A.B., Bakulev V.I., Golubev V.A. et al. Termogazodinamicheskie raschety i raschet kharakteristik aviatsionnykh GTD (Thermogasodynamic calculations and calculation of characteristics of aviation GTE), Moscow, MAI, 2002, 257 p.

  6. Potkin A.N., Krupin V.P., Kozlyakova I.S., Fadeev V.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2012, no. 3-2(34), pp. 319-325.

  7. Belova S.E., Karpov F.V. Oreshkina M.N. et al. Vestnik RGATA im. Solov’eva, 2009, no. 1(15), pp. 87-93.

  8. Nesterenko V.G., Nesterenko V.V., Matushkin A.A. et al. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2014, no. 7(114), pp. 83–93.

  9. V’yunov S.A., Gusev Yu.I., Karpov A.V. et al. Konstruktsiya i proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Design and design of aircraft gas turbine engines), Moscow, Mashinostroenie, 1989, 368 p.

  10. Cengel Y.A., Ghajar A.J. Heat and Mass Transfer: Fundamentals and Applications, 5th edition, McGraw-Hill Education, 2014, 992 р.

  11. Bergman T.L., Incropera F.P., Lavine A.S., DeWitt D.P., Lavine A.S. Fundamentals of Heat and Mass Transfer, 6th edition, John Wiley & Sons, 2011, 1048 р.

  12. Nesterenko V.G., Revanth Reddy A. Improvement of the design and methods of designing tubular air-to-air heat exchangers cooling systems of gas turbines. 30th Congress of the International Council of the Aeronautical Sciences – ICAS’2016 (25-30 September; DCC, Daejeon, Korea). URL: https://www.icas.org/ICAS_ARCHIVE/ICAS2016/data/papers/2016_0433_paper.pdf

  13. Kalinin E.K., Dreitser G.A., Kopp I.Z., Myakochin A.S. Effektivnye poverkhnosti teploobmena (Effective heat exchange surfaces), Moscow, Energoatomizdat, 1998, 408 p.

  14. Minchenko A., Nesterenko V., Malinovsky I., Revanth Reddy A. Improving the Cooling Air Supply System for the HPT Blades of High-Temperature GTE. International Conference on Aerospace System Science and Engineering – ICASSE’2019. Lecture Notes in Electrical Engineering, Springer, Singapore, Vol. 622, pp. 55-65. DOI: 10.1007/978-981-15-1773-0_5

  15. Avgystinovich V.G., Shmotin Yu.N., Sipatov A.M. et al. Chislennoe modelirovanie nestatsionarnykh yavlenii v gazoturbinnykh dvigatelyakh (Numerical modeling of unsteady phenomena in gas turbine engines), Moscow, Mashinostroenie, 2005, 523 p.
  16. Piralishvili Sh.A., Piotukh S.M., Potkin A.N., Krupin V.P. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Solov’eva, 2013, no. 2(25), pp. 51-56.

  17. Venediktov V.D. Gazodinamika okhlazhdaemykh turbin (Dynamics of cooled turbines), Moscow, Mashinostroenie, 1990, 240 p.

  18. Nagoga G.P. Effektivnye sposoby okhlazhdeniya lopatok vysokotemperaturnykh gazovykh turbin (Effective methods of cooling the blades of high-temperature gas turbines), Moscow, MAI, 1996, 100 p.

  19. Demenchenok V.P., Druzhinin L.N., Parkhomov A.L. et al. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei (Theory of two-circuit turbojet engines), Moscow, Mashinostroenie, 1979, 432 p.

  20. Baturin O.V., Nikolalde P., Popov G.M., Korneeva A.I., Kudryashov I.A. Mathematical model identification of gas turbine engine with account for initial data uncertainty. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 171-185. DOI: 10.34759/vst-2021-2-171-185

  21. Nikitin I.S., Magdin A.G., Pripadchev A.D., Gorbunov A.A. Turbojet engine power increasing by air-cooling at the inlet device. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 130-138. DOI: 10.34759/vst-2021-2-130-138

  22. Koval’ S.N., Badernikov A.V., Shmotin Y.N., Pyatunin K.R. Digital twin technology application while gas turbine engines development. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 139-145. DOI: 10.34759/vst-2021-2-139-145

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI