Weight model rescue system at parachute systems flight tests conducting

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-1-171-183

Аuthors

Ivanov P. I.

Research Institute of Aeroelastic Systems, 85, Garnaeva str, Feodosia, Crimea Republic, 298112, Russia

e-mail: Ivanovpetr@rambler.ru

Abstract

Flight tests of new parachute systems often lead to an increased landing speed of weight models with an unacceptably high value of landing overload and loss, along with the layout, of both test materials and expensive flight test equipment. This makes employing a rescue parachute system as a part of a weight model along with the parachute system being tested. The said rescue system should be in constant readiness to its application, and the experiment should be planned so that urgently identify a critical failure and run the rescue parachute system in case of emergency. The presented work is devoted to the cargo rescuing parachute systems development.

The issues of flight test equipment certification for large-area parachute systems were considered in detail in [1], particularly, the requirements for weight models that act as weight equivalents of the landing cargo. Weight models are also being equipped with costly sensors, measuring and recording equipment employed for qualitative and quantitative assessment of the tested parachute system functioning.

Flight tests of new parachute equipment, as a rule, are of a high risk of the parachute system failure during its operation with all subsequent negative consequences following this, i.e. accidents of weight models and irretrievable loss of valuable information and expensive equipment.

To preserve the integrity of the weight models, besides the parachute system being tested, which characteristics have to be studied, they should be equipped with the block of parachutes of the rescue parachute system, which is being run in case of the tested parachute system failure.

The task consists in assessing the possible causes, as well as scenarios of the emergencies occurrence and development, possible outcomes in cases of failures in the functioning processes of the tested parachute systems, options for the emergency parachute systems bringing into action and the rescue system selection for the weight model.

The studies of weight models rescuing were being conducted for the first time in [2-4].

The presented article regards in detail the following issues on the task being considered:

– The requirements laid for the rescue parachute system and its functioning specifics;

– Ballistic calculations performing and phase trajectories developing for the weight model free motion;

– Cascading of the system, and determining the canopies areas of the parachute cascades;

– Examples of computations and phase trajectories plotting;

– Minimum permissible height determining of the introduction of the main and braking parachutes of the parachute rescue system;

– Specifics of phase trajectories plotting with account for possible emergencies;

– Development of the flight operations implementation programs logic for the automatics of the rescue parachute system operation control system.

The goal of this work consists in continuing and developing the studies started in [2-4].

Keywords:

weight model, parachute system being tested, rescue parachute system, emergency situation

References

  1. Ivanov P.I., Krashilin V.V., Krivorotov M.M., Per’kov Yu.L. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2018, no. 1, pp. 49-56.

  2. Ivanov P.I., Shmerova G.V. Predvaritel’nye raschety dlya razrabotki parashyutnoi sistemy spaseniya VM tipa Fab-3000, ispol’zuemoi pri provedenii letnykh ispytanii parashyutnykh sistem. Tekhnicheskaya spravka (Preliminary calculations for the development of a parachute rescue system of the Fab-3000 type used during flight tests of parachute systems. Technical reference), VKIB, 18079, Feodosia, NII AUS, 2018, 53 p.

  3. Kurinnyi S.M. Nauchnyi Vestnik MGTU GA, 2020, vol. 23, no. 1, pp. 84–94.

  4. Ivanov P.I., Shmerova G.V., Kurinnyi S.M. Razrabotka sistemy parashyutnoi spasatel’noi dlya spaseniya VM tipa FAB-3000 v sluchae vozniknoveniya avariinykh situatsii pri provedenii letnykh ispytanii na predel’nykh ekspluatatsionnykh rezhimakh i rezhimakh forsazha. Rezul’taty raschetov (Development of a parachute rescue system for the rescue of a FAB-3000 type VM in case of emergency situations during flight tests at extreme operating conditions and afterburner modes. Calculation results), VKIB, 18132, Feodosia, NII AUS, 2019, 57 p.

  5. Ivanov P.I., Kurinnyi S.M., Krivorotov M.M., Shmerova G.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2018, vol. 17, no. 2, pp. 91-99. DOI: 10.18287/2541-7533-2018-17-2-91-99

  6. Ivanov P.I. Letnye ispytaniya parashyutnykh system (Flight tests of parachute systems), Feodosia, Grand-S, 2001, 332 p.

  7. Mironov A.D., Lapin A.A., Meerovich G.Sh., Zaitsev Yu.I. Zadachi i struktura letnykh ispytanii samoletov i vertoletov (Tasks and structure of flight tests of airplanes and helicopters), Moscow, Mashinostroenie, 1982, 144 p.

  8. Nogin V.D., Protod’yakonov I.O., Evlampiev I.I. Osnovy teorii optimizatsii (Fundamentals of optimization theory), Moscow, Vysshaya shkola, 1986, 384 p.

  9. Venttsel’ E.S. Issledovanie operatsii: zadachi, printsipy, metodologiya (Operations research: tasks, principles, methodology), Moscow, KnoRus, 2010, 191 p.

  10. Sarkisyan S.A., Minaev E.S., Kaspin V.I. et al. Teoriya prognozirovaniya i prinyatiya reshenii (Theory of forecasting and decision-making), Moscow, Vysshaya shkola, 1977, 352 p.

  11. Sarkisyan S.A., Golovanov L.V. Prognozirovanie razvitiya bol’shikh system (Forecasting the development of large systems), Moscow, Statistika, 1975, 192 p.

  12. Sarkisyan S.A. Ekonomicheskaya effektivnost’ aviatsionnoi tekhniki. Tematicheskii sbornik statei. Moscow, Mashinostroenie, 1974, pp. 3-11.

  13. Churkin V.M. Ustoichivost’ i kolebaniya parashyutnykh system (Stability and fluctuations of parachute systems), Moscow, URSS, 2018, 230 p.

  14. Churkin V.M. Dinamika parashyutnykh sistem na etape spuska (Dynamics of parachute systems at the descent stage), Moscow, MAI-PRINT, 2008, 184 p.

  15. Churkin V.M., Serpicheva E.V., Silant’ev V.M. Trudy MAI, 2003, no. 12. URL: http://trudymai.ru/eng/published.php?ID=34455

  16. Morozov V.I., Ponomarev A.T., Zhivotov N.P., Morozov A.A. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2000, no. 11, pp. 27-37.

  17. Churkin V.M., Churkina T.Y. The Analysis of free oscillations parachute Systems with elastic line. Aerospace MAI Journal, 2012, vol. 19, no. 3, pp. 143-148.

  18. Antonenko A.I., Rysev O.V., Fatykhov F.F., Churkin V.M., Yurtsev Yu.N. Dinamika dvizheniya parashyutnykh system (Dynamics of movement of parachute systems), Moscow, Mashinostroenie, 1982, 152 p.

  19. Lobanov N.A. Osnovy rascheta i konstruirovaniya parashyutov (Fundamentals of calculation and design of parachutes), Moscow, Mashinostroenie, 1965, 363 p.

  20. Churkin V.M. Nekotorye voprosy mekhaniki. Sbornik statei, no. 460, Moscow, MAI, 1978, pp. 44-49.


mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI