Optical surveillance system of unmanned aerial vehicle and a method of its stabilization

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-1-184-200

Аuthors

Lupanchuk V. Y.

Ministry of Defense of the Russian Federation, Moscow, Russia

e-mail: raketofflu@mail.ru

Abstract

The subject of the article relevance is stipulated by the presence of fundamental possibility of solving the axis of sight stabilization problem of the optical means positioned on the movable base of the unmanned aerial vehicle under conditions of low stabilization accuracy of the gyroscopic platform at rapid u-turns, vibration and aerial vehicles maneuvers.

The purpose of the research of the article consists in accuracy increasing of the axis of sight of optical devices installed on a gyro-stabilized platform of an unmanned aerial vehicle.

The object of the study is the optical surveillance system of an unmanned aerial vehicle.

The subject of the study is the process of objects determining by the optoelectronic system of an unmanned aerial vehicle.

The novelty of the research is stipulated by the development and scientific justification of an optical surveillance system of an unmanned aerial vehicle, as a part of television and thermal imaging information channels, a laser rangefinder-designator, as well as mathematically described method for optical surveillance system stabilizing.

Practical significance lies in application of an unmanned aerial vehicle optical surveillance system for objects capturing and tracking by the operator, as well as for objects automatic capture and tracking.

The article presents a block diagram of the gyroscopic stabilization system, as well as mathematical formulation of the problem of the optical surveillance system stabilization of an unmanned aerial vehicle.

The stabilizing method of the optical surveillance system of an unmanned aerial vehicle for determining objects, which allows independently estimate the speed and angles of departure of the biaxial gyrostabilizer platform based on the information on the nature of the platform stabilization system gyroscopes movement is substantiated. The stabilization problem solution is based on building an asymptotic optimal observer (identifier) of the biaxial gyrostabilizer state variables with incomplete stabilization coupling. It was assumed herewith that the system was under the effect of statistically indeterminate disturbances.

In general, the simulation revealed the possibility of employing the said algorithms to evaluate the initial position of the platform and calibrate systematic components of the platform departures of the biaxial gyrostabilizer under conditions of a movable base. 

Further trends of the research are the methods for images informativity increasing for identification and auto-tracking of the target detection objects by the unmanned aerial vehicle optical surveillance system in abnormal conditions associated with periodical images distortions.

Keywords:

three-channel gyro-stabilized optical surveillance system, multipurpose unmanned aerial vehicle, disturbing moments stabilization, vibration accelerometer, Luenberger state identifier

References

  1. Verba V.S., Tatarskii B.G. Kompleksy s bespilotnymi letatel’nymi apparatami. V 2 knigakh. Kn. 1. Printsipy postroeniya i osobennosti primeneniya kompleksov s BLA (Complexes with unmanned aerial vehicles. In 2 books. Book 1. Principles of development and application specifics of complexes with UAVs), Moscow, Radiotekhnika, 2016, 507 p.

  2. Adnastarontsau A.A., Adnastarontsava D.A., Fiodortsev R.V. et al. Algorithm for Control of Unmanned Aerial Vehicles in the Process of Visual Tracking of Objects with a Variable Movement’s Trajectory. Devices and Methods of Measurements, 2021, vol. 12, no. 1, pp. 46–57. DOI: 10.21122/2220-9506-2021-12-1-46-57

  3. Tiwari A. Position control of an unmanned aerial vehicle from a mobile ground vehicle. Open Access Master’s Thesis, Michigan Technological University, 2017, 141 p. DOI: 10.37099/mtu.dc.etdr/470

  4. Nicholas J.B. Control system development for small UAV Gimbal. A Thesis for the Degree Master of Science in Aerospace Engineering, California Polytechnic State University, San Luis Obispo, 2012, 113 p. https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1884&context=theses

  5. Lemaire P., Crispim-Junior C., Robinault L., Tougne L. Jitter-free registration for Unmanned Aerial Vehicle Videos. In: Bebis G. et al. (eds) Advances in Visual Computing. International Symposium on Visual Computing (21 October 2019; Lake Tahoe, NV, US). Vol. 11844, pp. 529-539. DOI: 10.1007/978-3-030-33720-9_41

  6. Sushchenko O.A., Goncharenko A.V. Design of Robust Systems for Stabilization of Unmanned Aerial Vehicle Equipment. International Journal of Aerospace Engineering, 2016. DOI: 10.1155/2016/6054081

  7. Shipko V.V. Passivnoe opredelenie koordinat i parametrov dvizheniya nazemnykh i nadvodnykh tselei optiko-elektronnoi sistemoi bespilotnogo letatel’nogo apparata (Passive determination of coordinates and motion parameters of ground and surface targets by the optoelectronic system of an unmanned aerial vehicle), Voronezh, Nauchnaya kniga, 2021, 92 p.

  8. Volokitin D.A., Knyazeva V.V., Rumyantsev D.S. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62159

  9. Verba V.S., Tatarskii B.G. Kompleksy s bespilotnymi letatel’nymi apparatami. V 2 knigakh. Kn. 2. Robototekhnicheskie kompleksy na osnove BLA (Complexes with unmanned aerial vehicles. In 2 books. Book 2. Robotic complexes based on UAVs), Moscow, Radiotekhnika, 2016, 821 p.

  10. Goncharov V.M., Lupanchuk V.Yu. Neirokomp’yutery: razrabotka, primenenie, 2020, no. 1, pp. 18-30. DOI: 10.18127/j19998554-202001-02

  11. Lupanchuk V.Yu., Kukankov S.N., Goncharov V.M. Patent RU 2722599 C1, 02.06.2020.

  12. Goncharov V.M., Zaitsev A.V., Lupanchuk V.Y. Coordinates measuring techniques improving of unmanned aerial vehicle in conditions of abnormality (distortion). Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 206-221. DOI: 10.34759/vst-2020-4-206-221

  13. Fedulin A.M., Nikadrov G.V. Sbornik statei V Voenno-nauchnoi konferentsii “Robotizatsiya Vooruzhennykh cil Rossiiskoi Federatsii” (25-27 September 2019; Anapa, Russia), Anapa, VIT “ERA”, 2020, pp. 66-71.

  14. Knyaz’ V.A., Vishnyakov B.V., Vizil’ter Yu.V., Gorbatsevich V.S., Vygolov O.V. Informatika i avtomatizatsiya (Trudy SPIIRAN), 2016, no. 2(45), pp. 26-44. DOI: https://doi.org/10.15622/sp.45.2

  15. Lupanchuk V.Yu., Charovskii M.A., Sergeev Yu.A. et al. Patent RU 202176 U1, 05.02.2021.

  16. Kuznetsov V.I. Promyshlennye ASU i kontrollery, 2014, no. 12, pp. 30-33.

  17. Aleksandrov M.A., Smirnov N.V. Vestnik Sankt-Peterburgskogo universiteta. Seriya 10. Prikladnaya matematika. Informatika. Protsessy upravleniya. 2011, no. 2, pp. 81-89.

  18. Smirnov N.V. Avtomatika i telemekhanika, 2006, no. 7, pp. 41-52.

  19. Voronov A.A. (ed) Teoriya avtomaticheskogo upravleniya. V 2 chastyakh (Theory of automatic control. In 2 parts), Moscow, Vysshaya shkola, 1986. Part 1, 367 p.

  20. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of estimation theory with applications to navigation information processing tasks. Part 1. Introduction to the theory of evaluation), St. Petersburg, Elektropribor, 2017, 509 p.

  21. Andreev N.I. Teoriya statisticheski optimal’nykh sistem upravleniya (Theory of statistically optimal control systems), Moscow, Nauka, 1980, 415 p.

  22. Shakhov Ya.A. Vestnik SGTU. Seriya Fiziko-matematicheskie nauki, 2010, no. 5(21), pp. 258-262.

  23. Smirnov N.V. Izvestiya RAN. Teoriya i sistemy upravleniya, 2001, no. 3, pp. 40-44.

  24. Kamkin E.F., Orlov I.N., Sivkov M.A. Trudy FGUP “NPTsAP”. Sistemy i pribory upravleniya, 2016, no. 3, pp. 5-13.

  25. Kamkin E.F. Trudy FGUP “NPTsAP”. Sistemy i pribory upravleniya, 2014, no. 3, pp. 43-50.

  26. Shakhov Ya.A. Mnogoprogrammnye upravleniya v kvazilineinykh dinamicheskikh sistemakh (Multi-program controls in quasi-linear dynamic systems), Abstract of doctor’s thesis, St. Petersburg, SPbGU, 2011, 16 p.

  27. Kuznetsov V.I. Promyshlennye ASU i kontrollery, 2014, no. 3, pp. 45-51.

  28. Kuznetsov V.I. Promyshlennye ASU i kontrollery, 2015, no. 6, pp. 55-59.

  29. Kuznetsov V.I. Promyshlennye ASU i kontrollery, 2014, no. 8, pp. 32-35.

  30. Bol’shakov A.A., Karimov R.N. Metody obrabotki mnogomernykh dannykh i vremennykh ryadov (Methods of multidimensional data and time series processing), Moscow, Goryachaya liniya – Telekom, 2007, 520 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI