Assessment of solid-solution hardening of austenitic alloys at nitrogen alloying

Metallurgy and Material Science


DOI: 10.34759/vst-2022-1-245-252

Аuthors

Petrova L. G.*, Belashova I. S.**

Moscow Automobile and Road Construction State Technical University (MADI), MADI, 64, Leningradsky Prospect, Moscow, 125319, Russia

*e-mail: petrova_madi@mail.ru
**e-mail: irina455@inbox.ru.

Abstract

The article deals with the development of the structural theory of strength and design on its basis of various technological schemes for surface hardening of steels and alloys. The basic principles of dislocation theory are also presented here, according to which the resistance of real metals to plastic deformation being expressed by the strength characteristics (yield strength σ t and tensile strength σv), is higher, the lower the dislocation mobility is, i.e. the more barriers are in its path. On the other hand, the ductility and toughness of metals are being reduced herewith, leading to the brittle fracture as the result of the possible initiation and progressive development of a crack. Hardening of real metallic materials is being considered as the result of the dislocations interaction with a certain combination of several types of obstacles, or as a combined effect of several structural mechanisms, namely hardening by interstitial or substitutional atoms (solid solution hardening), hardening by grain and subgrain boundaries, hardening by dislocations, and hardening by dispersed particles. Contribution of these mechanisms to the overall hardening may vary greatly depending on the class, brand of metallic material, as well as on the technology employed. The approximation of linear additivity of various mechanisms is generally accepted and confirmed by the concurrence of calculated and experimental results for certain classes of steels.

This article adduces a calculation of the of the alloying elements impact in austenitic steels and alloys on the level of solid solution hardening, which is the predominant mechanism of structural strengthening in this class of austenitic steels while nitriding. It is worth noting that nitriding is one of the most widespread chemical-thermal treatment processes in mechanical engineering. The structural strengthening while formation solid solutions forming occurs due to the deceleration and blocking of dislocations by atoms of the dissolved element owing to the Cottrell atmospheres formation, which increase the stress required for dislocation glide, i.e., cause hardening. Hardening level prediction based on computational models allows associating the material structure with the yield strength and fracture toughness as the main indicators of the structural strength of a product, as well as maximally implementing the main of hardening mechanisms order to develop new effective technologies for creating materials with desired properties.

Keywords:

dislocations, hardening, solid solution, nitrogen activity coefficient, alloying, yield strength

References

  1. Prikhod’ko V.M., Petrova L.G., Chudina O.V. Metallofizicheskie osnovy razrabotki uprochnyayushchikh tekhnologii (Metal-physical foundations of the reinforcing technologies development), Moscow, Mashinostroenie, 2003, 384 p.

  2. Jaffee R.I., Wilcox B.A. (eds) Fundamental aspects of structural alloy design. Proceedings of the tenth Battelle Colloquium in the Materials Sciences (15-19 September 1975; Seattle, Washington and Harrison Hot Springs, B.C., Battelle Institute Materials Science Colloquia). Springer, 1975, p. 336.

  3. Krishtal M.A. Sbornik dokladov 26 Sessii po probleme zharoprochnosti “Struktura i svoistva zharoprochnykh metallicheskikh materialov” (01-30 April 1973; Moscow), Moscow, Nauka, 1973, pp. 186-196.

  4. Kanninen M.F. (ed) Inelastic Behavior of Solids.New York, McGraw-Hill, 1970, 743 p.

  5. Levy N., Marcal P.V., Ostergren W.J., Rice J.R. Small scale yielding near a crack in plane strain: a finite element analysis. International Journal of Fracture Mechanics, 1971, vol. 7, pp. 143-156. DOI: 10.1007/BF00183802

  6. Petrova L.G., Demin P.E., Aleksandrov V.A. Forming of chromium-nickel surface alloyed layer in steels by methods of thermo-chemical treatment. Thermal Processing in Motion 2018, including the 4th International Conference on Heat Treatment and Surface Engineering in Automotive Applications (05-07 June 2018; Spartanburg, South Carolina, USA), pp. 179-184.

  7. Bottoli F., Jellesen M.S., Christiansen T.L. et al. High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance. Applied Surface Science, 2018, vol. 431, pp. 24-31. DOI: 10.1016/j.apsusc.2017.06.094

  8. Petrova L.G. Uprochnyayushchie tekhnologii i pokrytiya, 2007, no. 4, pp. 9-17.

  9. Belashova I.S., Bibikov P.S., Petrova L.G., Sergeeva A.S. New nitriding process of high-alloyed maraging steel for cryogenic operation. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1064, 012004. DOI: 10.1088/1757-899X/1064/1/012004

  10. Petrova L.G., Demin P.E., Sergeeva A.S., Malakhov A.Yu. STIN, 2021, no. 3, pp. 20-24.

  11. Ramazanov K.N., Ishmukhametov D.Z., Sadkova N.S. Vestnik UGATU, 2011, vol. 15, no. 3(43), pp. 67-71

  12. Bibikov P.S., Belashova I.S., Prokof’ev M.V. Nitridation technology specifics of high-alloy corrosion-resistant steels of aviation purposes. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 206-215. DOI: 10.34759/vst-2021-2-206-215

  13. Sychev V.V. Differentsial’nye uravneniya termodinamiki (Differential equations of thermodynamics), Moscow, MEI, 2010, 250 p.

  14. Kostina M.V., Bannykh O.A., Blinov V.M., Dymov A.V., Berezovskaya V.V. Metally, 2001, no. 3, pp. 26–34.

  15. Belashova I.S., Bibikov P.S., Orekhov A.A., Starovoitov E.I. Controlled thermogasocyclic nitriding processes. INCAS BULLETIN, 2021, vol. 13, Special Issue, pp. 13–20. DOI: 10.13111/2066-8201.2021.13.S.2

  16. Petrova L.G., Sergeeva A.S. Phase structure control in austenite steels during surface strengthening by high-temperature nitride hardening. Science intensive technologies in mechanical engineering, 2020, no. 6(108), pp. 3-11. DOI: 10.30987/2223-4608-2020-6-3-11

  17. Bobylov A.A., Belashova I.S., Kuzmin S.D. The contact problemof indentation of a functionally graded coating by a convex punch undera predefinedload. Aerospace MAI Journal, 2014, vol. 21, no. 3, pp. 151-160.

  18. Shtremel’ M.A. Razrushenie: monografiya v 2 kn. Kn. 1. Razrushenie materiala (Destruction: monograph in two books. Book 1. Destruction of the material), Moscow, MISiS, 2014, 670 p.

  19. Lakhtin Yu.M., Kogan Ya.D., Bulgach A.A. Metallovedenie i termicheskaya obrabotka metallov, 1982, no. 4, pp. 15-18.

  20. Shtremel’ M.A. Razrushenie: monografiya v 2 kn. Kn. 2. Razrushenie struktur (Destruction: monograph in 2 books. Book 2. Destruction of the structures), Moscow, MISiS, 2015, 976 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI