Calibration of gas turbine engine mathematical model on the test-bench data by combinatorial analysis methods in the ThermoGTE software

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-2-144-157

Аuthors

Vovk M. Y.1*, Leshchenko I. A.2**, Danichev A. V.3***, Greben’kov P. A.3****, Gorshkov A. Y.3*****

1. Lyulka Experimental Design Bureau, branch of the United Engine Corporation – Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia
2. United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia
3. Lyulka Desing Bureau, 13, Kasatkina str., Moscow, 129301, Russia

*e-mail: mihail.vovk@okb.umpo.ru
**e-mail: igor.leschenko@yandex.ru
***e-mail: Dànichev@mail.ru
****e-mail: grebenkovpavel@mail.ru
*****e-mail: Zub1500@mail.ru

Abstract

The processes of designing, fine-tuning and modernization of aircraft gas turbine engines require credibility of the mathematical models (MM) reflecting physical picture of the engine functioning processes. The latter can be achieved by the model parameters calibrating based on the engine test-bench and flight experiments results.

The MM calibration process of modern aircraft gas turbine engines is rather time-consuming task due to the need for identifying the main parameters obtained while experimental studies, which depend on a large number of parameters uncontrolled during the experiment, which values may vary while the identification process.

The presented work studies the combinatorial calibration method of the engine mathematical model. Four virtual experiments are pre-conducted, presented in the form of a model computation with introduced correction coefficients on the nodes characteristics. Global array of correction coefficients is being formed in the ThermoGTE software for the existing engine structure by the results of virtual tests. Further, the problem on the calculated parameters and experimental results minimization is being solved for each combination of correction coefficients by the ThermoGTE software built-in simplex method. As the result, an array of resulting functions is being formed for each combination of corrections, and the most accurate groups of corrections are being determined. The selected solutions operability is being checked thereafter by correction coefficients substituting into the engine mathematical model. As the result, the research engineer obtains several scenarios for the mathematical model calibration. It is assumed while solving that the parameters being measured have no deviation from the real ones (zero measurement error). The correction multipliers constancy is being assumed as well that at all engine operation modes.

The presented MM calibration method may be employed to refine mathematical model of any engine with any number of measured parameters. However, it should be noted that the presence of a large number of correction coefficients of the model under study leads to an exponential increase in the computation time, which in its turn leads to the need for the problem parallelization.

Keywords:

GTE mathematical model, parametric verification, GTE characteristics, virtual experiment, ThermoGTE

References

  1. Tunakov A.P. Metody optimizatsii pri dovodke i proektirovanii gazoturbinnykh dvigatelei (Optimization methods for gas turbine engine adjusting and designing), Moscow, Mashinostroenie, 2001, 184 p.
  2. Akhmedzyanov A.M., Gumerov Kh.S., Markovnikova E.I., Degtyarev Yu.D. Ispytaniya aviatsionnykh dvigatelei. Mezhvuzovskii nauchnyi sbornik. Ufa, UGATU, 2011, no. 6, pp. 13–19.
  3. Kurlykov V.A., Akhmedzyanov A.M. Ispytaniya aviatsionnykh dvigatelei. Mezhvuzovskii nauchnyi sbornik. Ufa, UGATU, 2017, no. 7, pp. 85–89.
  4. Borovik V.O., Taran E.M. Ispytaniya aviatsionnykh dvigatelei. Mezhvuzovskii nauchnyi sbornik, Ufa, UGATU, 2014, no. 6. pp. 3–12.
  5. Ezrokhi Yu.A. Modelirovanie dvigatelya i ego uzlov. V Mashinostroenie: Entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli (Engine and its components modeling. In: Engineering. Encyclopedia. Vol. IV-21 «Airplanes and helicopters». Book 3 «Aircraft engines»), Moscow, Mashinostroenie, 2010, pp. 341-353.
  6. Cherkez A.Ya. Inzhenernye raschety gazoturbinnykh dvigatelei metodom malykh otklonenii (Gas turbine engine engineering design by the small-deviations method), Moscow, Mashinostroenie, 1975, 380 p.
  7. Kotovskii V.N., Vovk M.Yu. Matematicheskoe modelirovanie rabochego protsessa i kharakteristik GTD pryamoi reaktsii (Mathematical modelling of the direct reaction GTE operation and performances), Moscow, Pero, 2018, 309 p.
  8. Egorov I.N., Kretinin G.V., Leshchenko I.A. Optimal design and control of gas-turbine engine components: a multicriteria approach. Aircraft Engineering and Aerospace Technology, 1997, vol. 69, no. 6, pp. 518-526. DOI: 10.1108/00022669710185977
  9. Fedorov R.M. Kharakteristiki osevykh kompressorov (Axial compressors performances), Voronezh, Nauchnaya kniga, 2015, 220 p.
  10. Grigor’ev V.A., Kuznetsov S.P., Gishvarov A.S. Ispytaniya aviatsionnykh dvigatelei (Aviation engines testing), Moscow, Mashinostroenie, 2009, 504 p.
  11. Kofman V.M. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2009, vol. 13, no. 1(34), pp. 57-65.
  12. Sklyarova A.P., Gorbunov A.A., Zinenkov Y.V., Agul’nik A.B., Vovk M.Y. Search for optimal power plant to improve maneuverable aircraft efficiency. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 181-191. DOI: 10.34759/vst-2020-4-181-191
  13. Dvigateli aviatsionnye gazoturbinnye. Metod i podprogrammy rascheta termodinamicheskikh parametrov vozdukha i produktov sgoraniya uglevodorodnykh topliv. Rukovodyashiy tekhnicheskiy material aviatsionnoy teckhniki RTM 1677-83 (Aircraft gas turbine engines. Methods and routines for air and hydrocarbon fuel combustion products thermodynamic parameters calculation. Guiding technical material of aviation technique, No. 1677-83), Moscow, TsIAM, 1983, 92 p. URL: http://www.1bm.ru/techdocs/kgs/ost/244/info/47340/
  14. Marchukov E. Y., Vovk M. Y., Kulalaev V. V. Technical appearance analysis of energy systems by mathematical statistics techniques. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 156-165. DOI: 10.34759/vst-2019-4-156-165
  15. Krivosheev I.A., Ivanova O.N., Goryunov I.M. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2005, vol. 6, no. 1(12), pp. 65-75.
  16. Lin A., Liu G., Wang X., Feng Q. Comprehensive evaluations on performance and energy consumption of pre-swirl rotor—stator system in gas turbine engines. Energy Conversion and Management, 2021, vol. 244, 114440. DOI: 10.1016/j.enconman.2021.114440
  17. Danyal Mohaddes, Clarence T.Chang, Matthias Ihme. Thermodynamic cycle analysis of superadiabatic matrix-stabilized combustion for gas turbine engines. Energy, 2020, vol. 207, 118171. DOI: 10.1016/j.energy.2020.118171
  18. Chichkov B.A. Metodologiya optimal’nogo postroeniya i ispol’zovaniya diagnosticheskikh modelei gazoturbinnykh dvigatelei (Methodology for optimal development and application of gas turbine engines diagnostic models). Doctor’s thesis, Moscow, MGTU GA, 2004, 147 p.
  19. Şöhret Y., Ekici S., Altuntaş Ö., Hepbasli A., Karakoç T.H. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Aerospace Sciences, 2016, vol. 83, pp. 57-69. DOI: 10.1016/j.paerosci.2016.03.001
  20. Aygun H., Turan O. Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase. Energy, 2022, vol. 238, part A, 121644. DOI: 10.1016/j.energy.2021.121644
  21. Rakhmankulov V.Z., Akhrem A.A. Upravlenie informatsionnymi potokami. Sbornik trudov ISA RAN. Moscow, URSS, 2002, pp. 290–294.
  22. Dulepov N.P., Lanshin A.I., Lukovnikov A.V. et al. Effectiveness of two-mode hypersonic ramjet engines in hybrid aerospace power units. Russian Engineering Research, 2011, vol. 31, no. 8, pp. 764-770. DOI: 10.3103/S1068798X11080090
  23. Zellnick H.E., Sondak N.E., Davis R.S. Gradient search optimization. Chemical Engineering Progress, 1962, no. 58(8), pp. 35-41.
  24. Aygun H. Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings. Energy, 2022, vol. 245, 123251. DOI: 10.1016/j.energy.2022.123251

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI