Fault detection algorithm for spacecraft attitude thrusters based on its rotational motion dynamics analysis

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-2-166-178

Аuthors

Zhirnov A. V.

S. P. Korolev Rocket and Space Corporation «Energia», 4A Lenin Street, Korolev, Moscow area, 141070, Russia

e-mail: post@rsce.ru

Abstract

The article deals with the failures of spacecraft attitude thrusters applied for angular maneuvers and rotational motion stabilization. A failure of the thruster as a part of the spacecraft attitude control loop may lead to failure of the attitude mode, high fuel consumption, exceeding the allowable loads on the structure, and even to the loss of the spacecraft. The system functioning reliability requires continuous monitoring of the thrusters running correctness in real time and timely failures parrying them in case of their occurrence.

The article considers the two possible types of failures, such as the thruster start failing, i.e. it does not start at the starting command, and the thruster turn-off failing, i.e. it keeps on running at the turnoff command. The proposed algorithm is based on the analysis of the difference between the actual behavior of the angular motion dynamics of a real control object and its onboard model. The mismatch between the vector of the measured angular rate and the vector of the angular motion estimation is being analyzed. This type of mismatch is well suited for the fact of the attitude thruster failure detecting, since it will be close to zero at any stroke of the onboard computer, while it will differ greatly from zero at the certain strokes. The thruster turnoff failure is possible to detect by analyzing the mismatch only at the strokes, where the turn-on commands for the failed thruster do not present, while the thruster turn-on failure is possible to detect by the mismatch analyzing only at the strokes where the failed thruster turn-on commands do present.

The article issues recommendations for the algorithm parameters selection. The proposed algorithm operability is being demonstrated by the results of mathematical modeling.

Keywords:

failure diagnostics, attitude control, attitude thrusters

References

  1. Donskov A.V., Mishurova N.V., Solov’ev S.V. Automated system for space vehicle status monitoring. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 151-160.
  2. Kamenskii K.V., Martirosov D.S. А method for current state monitoring of liquid rocket engine in stationary and transient modes. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 46-53. DOI: 10.34759/vst-2021-3-46-53
  3. Zhirnov A.V., Timakov S.N. Algorithm of Thruster Failure Detection for the International Space Station Based on Self-Adjusting Onboard Model of Angular Motion Dynamics. Herald of the Bauman Moscow State Technical University Series Instrument Engineering, 2016, no. 4(109), pp. 98‑114. DOI: 10.18698/0236-3933-2016-4-98-114
  4. Simani S., Fantuzzi C., Patton R.J. Model-based fault diagnosis in dynamic systems using identification techniques. Springer-Verlag, 2002, 297 p.
  5. Chen J., Patton R.J. Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer, Academic Publisher, 1999, 326 p.
  6. Fonod R., Henry D., Charbonnel C., Bornschlegl E. Position and Attitude Model-Based Thruster Fault Diagnosis: A Comparison Study. Journal of Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics, 2015, 38, no. 6, pp.1012-1026. DOI: 10.2514/1.G000309
  7. Fonod R., Henry D., Bornschlegl E., Charbonnel C. Thruster Fault Detection, Isolation and Accommodation for an Autonomous Spacecraft. 19th International Federation of Automatic Control (IFAC) World Congress (24-29 August 2014; Cape Town, South Africa). 47, no. 3. DOI: 10.3182/20140824-6-ZA-1003.02144
  8. Zolghadri A. Advanced Model-Based FDIR Techniques for Aerospace Systems: Today Challenges and Opportunities. Aerospace Sciences, 2012, vol. 53, no. 3, pp. 18–29. DOI: 10.1016/j.paerosci.2012.02.004
  9. Fonod R., Henry D., Charbonnel C., Bornschlegl E. Robust Thruster Fault Diagnosis: Application to the Rendezvous Phase of the Mars Sample Return Mission. 2nd CEAS Specialist Conference on Guidance, Navigation and Control (10-12 April 2013; Delft University of Technology, Netherlands), 1496-1510. FrBT2.2
  10. Kropotin S.A., Smolentsev A.A., Bobylev A.S. et al. Results of re-using Soyuz manned spacecraft descent thrusters. Space Engineering and Technology magazine, 2021, no. 3(34), pp. 37-47. DOI: 10.33950/spacetech-2308-7625-2021-3-37-47
  11. Akhmetov R.N. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva, 2008, no. 2(15), pp. 194-210.
  12. Kolesnikov K.S. Dinamika raket (Rocket dynamics), Moscow, Mashinostroenie, 2003, 519 p.
  13. Eykhoff P. System identification. Parameter and State Estimation. London, John Wiley and Sons Ltd, 1974, 555 p.
  14. Kwakernaak H., Sivan R. Linear Optimal Control Systems. New York, Wiley-Interscience, 1972, 608 p.
  15. Zubov N.E., Mikrin E.A., Ryabchenko V.N., Timakov S.N. The use of an adaptive bandpass filter as an observer in the control loop of the international space station. Journal of Computer and Systems Sciences International, 2012, vol. 51, no. 4, pp. 560-572. DOI: 1134/S1064230712030124
  16. Timakov S.N., Zhirnov A.V. Algorithm of Active Damping of Elastic Oscillations of the International Space Station Construction. Herald of the Bauman Moscow State Technical University Series Instrument Engineering, 2014, no. 3(96), pp. 37-53.
  17. Timakov S., Zhirnov A. Active Damping Algorithm of the International Space Station Structure Vibration. 65th International Astronautical Congress IAC’14 (29 September — 3 October 2014; Toronto, Canada). C 1.4.5.
  18. Sun H., Zhang S. Blended Filter-Based Detection for Thruster Valve Failure and Control Recovery Evaluation for RLV. Algorithms, 2019, vol. 12, no. 11: 228. DOI: 10.3390/a12110228
  19. Chen W., Saif M. Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster Faults. Journal of Dynamic Systems, Measurement and Control, 2007, vol. 129, no. 3, pp. 352–356. DOI: 10.1115/1.2719773
  20. Kuzovkov N.T. Modal’noe upravlenie i nablyudayushchie ustroistva (Modal control and observing devices), Moscow, Mashinostroenie, 1976, 184 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI