On stiffness characteristics computing of lattice composite structures with metal sheathing

Metallurgy and Material Science


DOI: 10.34759/vst-2022-2-220-227

Аuthors

Skleznev A. A.*, Babichev A. A.**

Central research institute for special machinery, Zavodskay str., Khotkovo, Moscow region, 141371, Russia

*e-mail: skleznev@crism10.ru
**e-mail: 185@bk.ru

Abstract

The article deals with lattice thin-walled load-bearing shell elements equipped with an external sealed shell and applied in civil aviation as aircraft fuselages. Analysis of the existing experience in lattice composite structures design and application as appllied to both spacecraft and atmospheric aircraft is being performed. Composite skin together with composite bearing ribs, ensuring the structure aerodynamic quality and the aircraft internal volume tightness are being employed as a rule in the said structures.

The flight speeds increase, as well as possible shock impacts from objects of various nature, do not only hinder, but also make composite skin of aircraft elements application potentially impossible, whereby the authors propose to apply metal alloy skin in a lattice thin-walled shell structure.

The article proposes a technique for the design stage calculation of stiffness characteristics of lattice anisogrid structures with metal sheathing, which allows solving the problem of optimal design of this kind of structures by increasing their weight perfection. Comparison of the results obtained by analytical solving with those of the numerical experiment is being adduced.

As it follows from the results obtained, the presence of a metal edging does not only serve as a solution for creating a reliable mechanical linkage between the metal sheathing and the composite load-bearing element, but gives some increase in both flexural and membrane stiffness as well. The proposed method for stiffness characteristics determining and its verifying employing the finite element method (FEM) demonstrates the fundamental possibility of designing and calculating composite elements, such as beams, anisogrid plates and shells containing a metal edging or metal sheathing. It can be applied not only in aerospace designs, but also in the field of ground structures developing, as well as shipbuilding.

Keywords:

a structure from composite material, reinforced polymer composite material, averaged stiffness coefficients, anisogrid lattice structure, metal sheathing, thin-walled load-bearing shell

References

  1. Bokuchava P.N., Evstaf’ev V.A., Babuk V.A. Konstruktsii iz kompozitsionnykh materialov, 2020, no. 1(157), pp. 3-5.
  2. Razin A.F., Slitkov M.N., Garashchenko A.N. Voprosy oboronnoi tekhniki. Kompozitsionnye nemetallicheskie materialy v mashinostroenii, 2018, no. 2(189), pp. 28- 34.
  3. Azarov A.V., Razin A.F. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 269-281. DOI: 10.33113/mkmk.ras.2020.26.02.269_281.09
  4. Korobeinikov A.G., Barynin A.V., Zhgutov A.V. Voprosy oboronnoi tekhniki. Kompozitsionnye nemetallicheskie materialy v mashinostroenii, 2018, no. 2(189), pp. 17-21.
  5. Sorrentino L., Marchetti M., Bellini C. et al. Design and manufacturing of an isogrid structure in composite material: Numerical and experimental results. Composite Structures, 2016, vol. 143, pp. 189-201. DOI: 10.1016/j.compstruct.2016.02.043
  6. Ehsani A., Rezaeepazhand J., Attaran I. Fabrication of Laminated Composite Grid Structures Using VIP. Fibers Polymers, 2019, vol. 20, pp. 1909–1917. DOI: 10.1007/s12221-019-1205-x
  7. Ding B., Liu J., Huang Z. et al. Axial force identification of space grid structural members using particle swarm optimization method. Journal of Building Engineering, 2020, vol. 32, 101674. DOI: 10.1016/j.jobe.2020.101674
  8. Giusto G., Totaro G., Spena P. et al. Composite grid structure technology for space applications. Materials today: proceedings, 2021, vol. 34. Part 1, pp. 332-340. DOI: 10.1016/j.matpr.2020.05.754
  9. Vasil’ev V.V., Razin A.F. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2016, no. 11-12, pp. 3-12.
  10. Maskaykin V.A., Makhrov V.P. Thermal conductivity research of the aircraft heat-insulating skin under flight conditions. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 118-130. DOI: 10.34759/vst-2021-4-118-130
  11. Bezzametnov O.N., Mitryaikin V.I., Khaliulin V.I., Markovtsev V.A., Shanygin A.N. Impact damages effect assessment on compressive strength of integral panels from polymer composite materials. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 78-91. DOI: 10.34759/vst-2021-4-78-91
  12. Toh W., Yap Y.L., Koneru R. et al. An investigation on internal lightweight load bearing structures. International Journal of Computational Materials Science and Engineering, 2018, vol. 07, no. 04: 1850025. DOI: 10.1142/S2047684118500252
  13. Liu F., Feng R.-Q., Tsavdaridis K.D., Yan G. Designing efficient grid structures considering structural imperfection sensitivity. Engineering Structures, 2020, vol. 204: 109910. DOI: 10.1016/j.engstruct.2019.109910
  14. Liu L., Shi J., Bao H. A metal-composite joint and its mechanical performance. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 220-227.
  15. Cichosz E. Rozwуj samolotуw naddzwiekowych. Wydawnictwa Komunikacji i Lacznosci Warszawa, 1980.
  16. Skleznev A.A., Vasil’ev V.V., Razin A.F., Salov V.A. Patent RU 2765630 S1, 01.02.2022.
  17. Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structures. Fourth edition. Elsevier, USA, 2018, 856 p.
  18. Francisco M.B., Pereira J.L.J., Oliver G.A. et al. Multiobjective design optimization of CFRP isogrid tubes using sunflower optimization based on metamodel. Computers & Structures, 2021, vol. 249: 106508. DOI: 10.1016/j.compstruc.2021.106508
  19. Babkov A.V., Dekhtyar A.S. Load carrying capacity of cylindrical shells. Dorogi і mosti [Roads and bridges], 2020, no. 21, pp. 146-153. [in Ukrainian].
  20. Liu F., Feng R., Tsavdaridis K.D., Yan G. Designing efficient grid structures considering structural imperfection sensitivity. Engineering Structures, 2020, vol. 204: 109910. DOI: 10.1016/j.engstruct.2019.109910
  21. Krivoshapko S.N. Optimal shells of revolution and main optimizations. Structural mechanics of engineering constructions and buildings, 2019, vol. 15, no. 3, pp. 201-209. DOI: 10.22363/1815-5235-2019-15-3-201-209
  22. Li Z.Y., Gan H. Optimal Design of Space Grid Structure. International Conference on Architectural, Civil and Hydraulics Engineering (28-29 November 2015; Guangzhou, China), рр. 41-45. DOI: 10.2991/icache-15.2015.8

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI