Analysis of quartz nano-powders laser synthesis process

Metallurgy and Material Science


DOI: 10.34759/vst-2022-2-228-236

Аuthors

Vyatlev P. A.1*, Sysoev V. K.1**, Yudin A. D.1, 2***

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vyatlev@laspace.ru
**e-mail: SysoevVK@laspace.ru
***e-mail: yudin@lasapace.ru

Abstract

Synthesis and study of nano-powders properties of various oxide materials is an important problem in modern materials science. The quartz glass possesses a unique combination of characteristics, such as high melting point, high heat resistance, chemical inertness, and optical transparency. The said stipulates the interest in the preparation and study of nano-powders from this material.

One of the successful methods for obtaining nanopowders is the solid inorganic substances evaporation under the action of electron beams with subsequent condensation. The purpose of this work consists in to analyzing the process of obtaining silicon dioxide nano-powders based on high-intensity evaporation of quartz glass under the impact of CO2-laser radiation (10.6 μm), and studying the products of this reaction.

The subject of the study in this work is the process of evaporation from the surface of quartz glass under the impact of focused laser radiation from a CO2-laser of a 100 W power. The evaporation rate was being controlled by changing the laser beam power, the rotation speed, and the linear feed of the quartz rod. With the CO2-laser power increasing up to 5 kW, Si02 nano-powder obtaining with a productivity of up to 5 kg/h is possible.

Radiation, absorbed in a thin layer of quartz glass, heats it up to evaporation temperatures without the liquid phase formation. Quartz glass evaporates in the plasma state.

A brightly luminous plasma, which leads to the NO2 gas forming, is being formed in the process of quartz nano-poweders obtaining in the zone of material evaporation under the impact of the focused laser radiation.

The sizes and phase composition of nanoparticles, as well as the specific surface area and optical properties of nanopowders, were studied. The spherical structure of the quartz powder particles is visible, which indicates a liquid-drop mechanism of evaporation. The size distribution has its maximum at 80 nm. The chemical composition of the silicon dioxide powders corresponds to the chemical composition of the feedstock, and, unlike industrial grades of silicon dioxide powders, they do not contain chlorine and fluorine.

Analysis of the obtained silicon dioxide nanopowders application revealed the possibility of their employing in high-quality polishing, cleaning, grinding friction pairs of high-precision mechanisms technologies, as well as an additive in composite polymer materials and lunar soil simulators.

Keywords:

quartz nano-powders, laser radiation, nitrous oxide

References

  1. Kushwaha A.K., John M., Misra M., Menezes P.L. Nanocrystalline Materials: Synthesis, Characterization, Properties, and Applications. Crystals, 2021, vol. 11, p. 1317. DOI: 10.3390/cryst11111317
  2. Obzor rynka dioksida kremniya (belaya sazha i aerosil) v Rossii i SNG (Silicon dioxide market overview (white soot and aerosil) in Russia and the CIS), 7th edition, Moscow, Infomain, 2021, 112 p.
  3. Rahman I., Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and application in silica-polymer nanocomposites — a review. Journal of Nanomaterials, 2012, vol. 2012, p.15. DOI: 10.1155/2012/132424
  4. Evonik Brochure, https://products.evonik.com/assets/46/56/244656.pdf
  5. AEROSIL® fumed silica — Product overview, https://products.evonik.com/assets/46/24/244624.pdf
  6. Ekokremnii, https://ekokremniy.ru/
  7. Bardakhanov S.P., Korchagin A.I., Kuksanov N.K. et al. Doklady Akademii nauk, 2006, vol. 409, no. 3, pp. 320-323.
  8. Sokovkin S.Yu., Il’ves V.G. Primenenie impul’snogo puchka dlya polucheniya nanoporoshkov oksidnykh metallov (Pulsed beam application for oxide metals nano-powders obtaining), Ekaterinburg, RIO UrO RAN, 2012, 319 p.
  9. Leko V.K., Mazurin O.V. Svoistva kvartsevogo stekla (Quartz glass properties), Leningrad, Nauka, 1985, 165 p.
  10. Machulka G.A. Lazernaya obrabotka stekla (Glass Laser Processing), Moscow, Sovetskoe Radio, 1979, 136 p.
  11. Sysoev V.K., Masychev V.I., Papchenko B.P. et al. Neorganicheskie materialy, 2003, vol. 39, no. 5, pp. 634-640.
  12. Dianov E.M., Lavrishchev S.V., Marchenko V.M. et al. Synthesis of the SiO2: nanocomposite by the laser distillation method. Quantum Electronics, 1996, vol. 26, no. 12, pp. 1075–1080. DOI: 10.1070/QE1996v026n12ABEH000877
  13. Sysoev V.K., Rusanov S.Ya. Obrabotka kvartsevogo stekla izlucheniem CO2 lazera (Quartz glass processing by CO2 laser radiation), Dusseldorf, LAP Lambert Academic Publishing GmbH & Co, 2012, 192 p.
  14. Askar’yan G.A., Batanov G.M., Gritsinin S.I. et al. Zhurnal tekhnicheskoi fiziki, 1990, vol. 60, no. 11, pp. 77-84.
  15. Antonov A.S., Ishanin G.G. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2014, vol. 57, no. 1, pp. 61-64.
  16. Gazoanalizatory azota, https://www.moslabo.ru/
  17. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. John Wiley and Sons Ltd., New York, 1979, 896 p.
  18. Patel K.K., Purohit R. Dispersion of SiO2 Nano Particles on Epoxy Based Polymer Nano Composites and its Characterization. Oriental Journal of Chemistry, 2018, vol. 34, no. 6. DOI: 10.13005/ojc/340641
  19. Fukubayashi Y., Yoga S. Porous Polyimide-Silica Composite: A New Thermal Resistant Flexible Material. Materials Research Society Online Proceedings Library, 2014, p. 1645. DOI: 10.1557/opl.2014.278
  20. Ponyrko S., Kovářová J., Kobera L., Matějka L. High-T-g, heat resistant epoxy—silica hybrids with a low content of silica generated by nonaqueous sol—gel process. Journal of Applied Polymer Science, 2014, vol. 131, no. 20: 40899. DOI: 10.1002/app.40899
  21. Pokrovskii A.M., Chermoshentseva A.S. Experimental study of nano-additives effect on properties of composite materials with interlayer defects. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 212-221.
  22. Bychkov A.N., Fetisov G.P., Kydralieva K.A., Sokolov E.A., Dzhardimalieva G.I. Nanocomposite materials based on metallic nanoparticles and thermoplastic polymer matrices: production and properties. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 209-222.
  23. Bagrov A.V., Sysoev A.K., Sysoev V.K., Yudin A.D. Modeling of sintering of moon soil imitators by solar radiation. Letters on Materials, 2017, vol. 7, no. 2, pp. 130-132. DOI: 10.22226/2410-3535-2017-2-130-132

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI