Aeronautical and Space-Rocket Engineering
DOI: 10.34759/vst-2022-3-41-55
Аuthors
Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia
e-mail: velomobil@yandex.ru
Abstract
The article recounts the technology of the fuselage internal layout by the automated system of three- dimensional layout for passenger aircraft (AVTOKOM) developed in TsAGI.
AVTOKOM allows forming passenger cabins and cargo bays of the fuselage with account for the specified comfort standards and safety requirements to the deployment of passenger seats, common and service premises, operational and emergency exits, luggage compartments etc. in both interactive and automatic modes.
The stages of fuselage layout by AVTOKOM are as follows:
-
Formation of typical elements that meet the specified standards and requirements.
-
Optimization of the cross section of the fuselage regular part.
-
Passenger and cargo decks layout.
-
Creating a parametric model of the fuselage outlines.
-
Three-dimensional surface model of the entire aircraft outlines.
-
Calculation of the center of mass of the elements comprising the layout.
-
Visualization of the studies results.
-
Output data formation for the subsequent calculations.
An iterative technology of passenger aircraft geometric model formation has been developed, on which basis further research in the areas of aerodynamic layout, structural strength and aircraft control systems are being conducted. As the result, the aircraft mathematical model that meets the layout requirements and numerous physical criteria is being formed.
The article presents the examples of the AVTOKOM application while performing the layout studies
of:
– A long-haul aircraft with 200, 400 and 600, 800, 1000 and 1400 passenger capacity for medium and
long-haul airlines;
– A long-haul aircraft concept with an integrated power plant;
– A long-haul aircraft on liquid hydrogen fuel;
– An aerospace plane with a capacity of 5-7 passengers.
As the result of these studies, the external geometric contours, layouts of passenger cabin and cargo bays of fuselages with elements of equipment and interior and specified nomenclature of service and cargo equipment, as well as layouts of the landing gear and fuel tanks have been formed. The article demonstrates that the standards of passenger comfort and safety requirements are met in all of the considered aircraft projects.
Keywords:
cross section of fuselage regular part, fuselage layout, AVTOKOM, external contours, passenger aircraft layout formingReferences
- Eger S.M. Proektirovanie passazhirskikh reaktivnykh samoletov (Passenger jet aircraft designing), Moscow, Mashinostroenie, 1964, 452 p.
-
Eger S.M. Mishin V.F., Liseitsev N.K. et al. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1983, 616 p.
-
Torenbeek E. Synthesis of subsonic airplane design. Springer, 1982, 620 p.
-
Lazarev V.V. Kontseptual'noe proektirovanie samoleta. Magistral'nye passazhirskie samolety (Conceptual design of aircraft. Mainline passenger aircraft), Moscow, MAI, 2013, 98 p.
-
Lazarev V.V. Aviatsionnaya ergonomika (Aviation ergonomics), Moscow, MAI, 2017, 120 p.
-
Eger SM., Liseitsev N.K., Samoilovich O.S. Osnovy avtomatizirovannogo proektirovaniya samoletov (Fundamentals of computer–aided aircraft design), Moscow, Mashinostroenie, 1986, 232 p.
-
Mal'chevskii V.V. Mashinostroenie. Entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 2. Proektirovanie, konstruktsii i sistemy samoletov i vertoletov, Moscow, Mashinostroenie, 2004, pp. 199-225.
-
CATIA applications for design and optimization, development and system design, https://www.3ds.com/ru/produkty-i-uslugi/catia/
-
Siemens NX software is an integrated solution for design, simulation, and manufacturing solutions that enable companies to realize the value of the digital twin, https://www.plm.automation.siemens.com/global/ru/products/nx/
-
Creo is the 3D CAD solution that helps you accelerate product innovation, https://www.ptc.com/en/products/creo
-
The industry standard in aircraft and cabin interior configuration, https://pace.txtgroup.com/products/product-configuration/mycabin/
-
Institut für Luft- und Raumfahrt. Computer Aided Preliminary Design of Aircraft, https://www.luftbau.tu-berlin.de/menue/forschung/abgeschlossene_projekte/visual_capda/
-
Seeckt K. Aircraft Preliminary Sizing with PreSTo. Re-Design of the Boeing B777-200LR. Department of Aeronautics, Kungliga Tekniska Högskolan (KTH, Royal Institute of Technology), Stockholm, Sweden, 2008, 76 s.
-
Schnauffer P. Multidisziplinärer Datenfluss im Entwicklungsprozess des Flugzeugbaus am Beispiel eines Senkrechtstarters. Dissertation, Universität Stuttgart, 2006, 144 s.
-
Niţă M., Scholz D. Process chain analysis and tools for cabin design and redesign activities. 27th International Congress of the Aeronautical Sciences ICAS’2010 (9-24 September 2010; Nice, France).
-
Sonin O.V. Svidetel'stvo o gosudarstvennoi registratsii programm dlya EVM " Avtomatizirovannaya sistema trekhmernoi komponovki fyuzelyazha passazhirskogo samoleta (AVTOKOM)”, No. 2010611470, 19.02.2010 (Certificate of state registration of computer programs “Computer-aided system of 3D design of passenger aircraft fuselage (AUTOCOM)”, no. 2010611470, 19.02.2010).
-
Sonin O.V. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii molodykh uchenykh i spetsialistov “Sovremennye problemy aerokosmicheskoi nauki i tekhniki”, Moscow, TsAGI, 2000, p. 268.
-
Chernyshev S.L. (ed.) Forsait razvitiya aviatsionnoi nauki i tekhnologii do 2030 goda i na dal'neishuyu perspektivu. Programmnyi kompleks avtomatizirovannoi komponovki (Foresight of the aviation science and technology development until 2030 and beyond. Software complex for automated layout), Moscow, TsAGI, 2014, p. 221.
-
Mezhgosudarstvennyi aviatsionnyi komitet. Aviatsionnye Pravila. Chast' 25. Normy letnoi godnosti samoletov transportnoi kategorii, 6-e izdanie s popravkami 1-9 (Interstate Aviation Committee. Civil Aviation Safety Regulations. Part 25 - Airworthiness standards: transport category airplanes, 6th edition with amendments 1-9), Moscow, Aviaizdat, 2020, 328 p.
-
Denisov V.E. Mashinostroenie. Entsiklopediya. T. IV-21. Samolety i vertolety. Kniga 1. Aerodinamika, dinamika poleta i prochnost' (Automation methods for preliminary design of mainline aircraft), Moscow, Mashinostroenie, 2002, pp. 756-772.
-
Shkadov L.M., Illarionov V.F. TsAGI - osnovnye etapy nauchnoi deyatel'nosti 1968-1993. Obzor (TSAGI - the main stages of scientific activity in 1968-1993), Moscow, Fizmatlit, 1996, pp. 269-284.
-
Denisov V.E., Skvortsov E.B., Udzhukhu A.Yu., Chernavskikh Yu.N. TsAGI - osnovnye etapy nauchnoi deyatel'nosti 1993-2003 (TsAGI - the main stages of scientific activity in 1993-2003), Moscow, Fizmatlit, 2003, pp. 259-265.
-
Denisov V.E., Kargopol'tsev V.A Shkadov L.M., Udzhukhu A.Yu. Problemy sozdaniya perspektivnoi aviatsionno-kosmicheskoi tekhniki. Sbornik statei, Moscow, Fizmatlit, 2005, pp. 389-400.
-
Udzhukhu A.Yu., Evstifeev V.V., Lazarev V.V. et al. Svidetel'stvo o gosudarstvennoi registratsii programm dlya EVM "Avtomatizirovannaya Raschetnaya Dialogovaya Sistema (ARDIS)”, No. 2010611209, 19.02.2010 (Certificate of state registration of computer programs “Automated Calculation Dialogue System (ARDIS)”, no. 2010611209, 19.02.2010).
-
Shkadov L.M., Andronov A.S., Bukhanova R.S. et al. Trudy TsAGI. Vypusk 2021, Moscow, Izdatel'skii otdel TsAGI, 1979, 36 p.
-
Shkadov L.M. Aviatsiya. Entsiklopediya (Aviation. Encyclopedia), Moscow, Bol'shaya rossiiskaya entsiklopediya, TsAGI, 1994, pp. 36-37.
-
Isaev V.K., Sonin V.V. Survey of the numerical solution techniques for variation problems in rocket flight. Post Apollo Space Explorer, Part 2. Washington, D.C., Amer Astronaut. Soc., 1966, pp. 1147-1171.
-
Isaev V.K., Sonin V.V. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 1965, vol. 5, no. 2, pp. 252-261.
-
Udzhukhu A.Yu, Sonin O.V. Patent RU 2361779 C1, 20.07.2009.
-
Bolsunovskii A.L., Buzoverya N.P., Gurevich B.I. et al. Flying wing – problems and decisions. Aircraft Design, 2001, vol. 4, no. 4, pp. 193-219. DOI: 10.1016/S1369-8869(01)00005-2
-
Sonin O.V. Materialy Shkoly-seminara molodykh uchenykh i spetsialistov “Aktual'nye problemy aerokosmicheskoi nauki”, Moscow, TsAGI, 2001, pp. 68-69.
-
Bolsunovskii A.L., Bondarev A.V., Gurevich B.I., Skvortsov E.B., Chanov M.N., Shalashov V.V., Shelekhova A.S. Development and analysis of civil aircraft concepts employing integration principles. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 49-63.
-
Plokhikh V.P., Buzuluk V.I., Udzhukhu A.Yu. Nauka i tekhnologii v promyshlennosti, 2012, no. 1-1, pp. 92-100.
-
Shkadov L.M., Dmitriev V.G., Denisov V.E. et al. The Flying-Wing Concept - Chances and Risks. AIAA/ICAS International Air and Space Symposium and Exposition: the next 100 year (14-17 July 2003; Dayton, Ohio). AIAA 2003-2887.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |