Optimal measurements filtering is a promising method for estimation accuracy improving of re-entry time and collision probability of space

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-3-191-199

Аuthors

Usovik I. V.1*, Nazarenko A. I.2**, Morozov A. A.***

1. Federal State Institution “Federal Scientific Center Scientific Research Institute for System Analysis of the Russian Academy of Sciences”, Nachimovskiy prosp., Moscow, 117218, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: usovikiv@gmail.com
**e-mail: anazarenko32@mail.ru
***e-mail: aamorozko@mail.ru

Abstract

With each year, the space debris poses increasing threat to the functioning spacecraft, as well as people and property on Earth. Dozens of large-size spacecraft enter annually the atmosphere and reach the Earth surface, and there is always a risk herewith of inflicting damage to the people or property. Several collision have occurred by now in the near-Earth space, which can be avoided in the future, if appropriate characteristics of the systems, which ensure warning about such events, will be guaranteed.

The basic method of the threats parrying associated with the space debris is a warning about dangerous situations, namely time and place of large objects re-entry, a possible collision of a spacecraft with space debris or some other spacecraft. For realizing this method and solving corresponding problems, the refined data on the spacecraft orbits parameters by measurements are being required. Accuracy improving of the orbits parameters evaluation and their further prediction is necessary for safety ensuring of space activities under conditions of a large number of spacecraft.

The article presents basic mathematical relationships of optimal measurement filtering method (OFI), and shows that the OFI method application may significantly improve the results of the re-entry time evaluation and the space objects collision probability compared to the conventionally employed least square method. The results of the OFI application while predicting the time and place of the Tiangong-1 orbital station re-entry are demonstrated using the available accessible data. A posteriori evaluation of the prediction results accuracy showed that the OFI application allows sevenfold accuracy increasing of the estimates, without increasing herewith the computational complexity.

One of the ways of new space debris forming mitigation consists in its active removal. Presently, the works on the space debris active removal have been transferred from research to the ones being realized in daily practice of space activities. In the years to come, a number of projects will be implemented to remove spent upper stages, rocket bodies and spacecraft from orbits. The article presents the results of comparing the areas of the space debris active removal obtained by the technique, which accounts for the OFI with a concrete list of objects, obtained by a group of international experts. As is seen from the comparison, 48 out of 50 objects get into the calculated areas, which indicates a good correspondence of results obtained earlier with estimates of international specialists group. In this regard, it can be considered that both the ranges of orbits in altitudes and inclinations, and specific objects have been determined to prevent collisions that could lead to a large formation of new objects in the near future.

The OFI method application in monitoring and warning systems for hazardous events related to the space debris will increase efficiency of their functioning with the existing measuring instruments.

Keywords:

measurement filtration, space debris, fall time, collision in space, active removal of space debris

References

  1. Linnik Yu.V. Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoi teorii obrabotki nablyudenii (Least squares method and mathematical and statistical theory basics for observations processing), Moscow, Fizmatgiz, 1962, 349 p.

  2. El’yasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli (Introduction to the theory of artificial Earth satellites flight), Moscow, URSS, Librokom,, 2011, 540 p.

  3. Smirnov N.N. (ed) Space Debris. Hazard Evaluation and Mitigation, Taylor & Francis Inc., 2001, 248 p.

  4. Smirnov N.N. Uspekhi mekhaniki, 2002, vol. 1, no. 2, pp. 13-104.

  5. Klinkrad H. Space Debris. Models and Risk Analysis. Chihester, UK. Springer Praxis Books, 2006, 440 p.

  6. Pardini C., Anselmo L. Uncontrolled re-entries of massive space objects. 4th International Space Debris Re-entry Workshop ESA/ESOC (28 February – 01 March 2018; Darmstadt, Germany).

  7. Donskov A.V. Analysis of modern evaluation and modeling methods of contingencies occurrence risks onboard a spacecraft. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 163-169.

  8. Nazarenko A.I. Vestnik NPO im. S.A. Lavochkina, 2012, no. 2(13), pp. 38-43.

  9. Nazarenko A.I. How can we increase the accuracy of determination of spacecraft’s lifetime? Acta Astronautica, 2015, vol. 116, pp. 229–236. DOI: 10.1016/j.actaastro.2015.07.004

  10. Fisher R.A. Theory of statistical estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 1925, vol. 22, no. 5, pp. 700–725. DOI: 10.1017/S0305004100009580

  11. Nazarenko A.I. Zadachi stokhasticheskoi kosmodinamiki. Matematicheskie metody i algoritmy resheniya (Problems of stochastic cosmo-dynamics. Mathematical methods and solution algorithms), Moscow, URSS, Lenand, 2018, 352 p.

  12. Space Scoreboard, http://www.space-track.org

  13. Atmosfera Zemli verkhnyaya. Model’ plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli. GOST R 25645.166-2004 (Earth upper atmosphere. Density model for ballistic support of flights of artificial earth satellites, State Standard R 25645.166-2004), Moscow, Standarty, 2004, 24 p.

  14. Raschety ballisticheskie iskusstvennykh sputnikov Zemli. Metodika rascheta indeksov solnechnoi aktivnosti. GOST 25645.302-83 (Artificial Earth satellite ballistic computations. Solar activity indexes calculation methods, State Standard 25645.302-83), Moscow, Standarty, 1997, 21 p.

  15. Space data, Space weather, https://www.celestrak.com

  16. Pardini C., Anselmo L. Uncontrolled re-entries of Tiangong-1. 36th IADC Plenary Meeting (05–08 June 2018; Tsukuba, Japan).

  17. Tiangong-1 (ID 37820), https://aerospace.org/reentries/tiangong-1-id-37820

  18. Orbital debris quarterly news, http://orbitaldebris.jsc.nasa.gov/newsletter/newsletter.html

  19. Usovik I.V., Darnopykh V.V., Malyshev V.V. Methodology of evolution of technogenic pollution assessment of low Earth orbits with regard to mutual collisions and active space debris removal. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 54-62.

  20. McKnight D., Witner R., Letizia F. et al. Identifying the 50 statistically-most-concerning derelict objects in LEO. Acta Astronautica, 2021, vol. 181, pp. 282-291. DOI: 10.1016/j.actaastro.2021.01.021

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI