Wear-resistant compexes of instrumental purpose for operation under increased thermal-power loading

Machine-building Engineering and Machine Science


DOI: 10.34759/vst-2022-3-222-230

Аuthors

Migranov M. S.*, Shekhtman S. R.**, Sukhova N. A.***, Gusev A. S.****

Moscow State University of Technology "STANKIN", 1, Vadkovsky lane, Moscow, 127994, Russia

*e-mail: migmars@mail.ru
**e-mail: shex@inbox.ru
***e-mail: nad_suhova@mail.ru
****e-mail: gusev.angrey@bk.ru

Abstract

The article deals with theoretical and experimental studies of cutting tool wear intensity while machining chrome-nickel alloys under temperature-force conditions employing modern wear-resistant complexes. Application of modifying multilayer-composite multicomponent nanostructured wear-resistant complexes is one of the most promising ways to improve the cutting properties of edge tools. The authors defined basic trends for edge cutting tools wear-off intensity reduction, associated with the friction coefficient value decreasing by application of the lubricant-cooling technological agents (LCTA) and wear-resistant complexes, as well as cutting temperature impact on the wear intensity in time. The cutting mode, temperature-force factor value in the working zone and contact phenomena at the cutting wedge affect the tool complexes origination (the tool material and wear-proof coating) with the effect of adaptation in the process of friction.

The article presents data on a series of experimental studies on the cutting process thermo-physics and mechanics, regularities of the cutting tool wear process while chromium-nickel parts lathe work for the qualitative estimation of the wear-resistant coatings effect on the machinability. Quadrihedral carbide plates (10 × 10 mm) and solid tools from the materials (BK8, BKIOOM) with various wear-resistant coatings were employed as cutting tools. The life testing and temperature-force tests were conducted with the I6K20 universal lathe machine of normal stiffness with stepless spindle rotation frequency control.

Temperature measuring in the process of metal cutting processing with a view to identify the average contact temperature with a sufficiently high accuracy and reliability was being performed by the natural thermocouple method. The thermo-EMF values registration and evaluation were accomplished by the mercury current collector and «Elemer» digital voltmeter. Estimation of friction coefficient and stress state of contact zone at various temperatures was conducted with the adhesion installation.

It has been established that the most favorable temperature-force state is being ensured at deposition the TiAlN of multilayer coatings after magnetic-arc filtration (MAF). Relative linear wear and its intensity decrease are being observed herewith, which can be explained by forming protective amorphous-like (aluminum oxide) and lubricating (titanium oxide) structures on the cutting wedge surface.

It has been revealed that the increase of cutting temperature and tangential component of cutting force with subsequent decrease of cutting tool wear resistance when using chromium-containing coating is associated with the phenomenon of chemical affinity of contacting materials at increased temperatures in the cutting zone.

It has been established that application of chromium-nickel alloys in the contact zone under conditions of the increased thermal power load at blade machining with tool wear-resistant complexes allows the twofold increasing of the durability period.

Keywords: wear-resistant complexes, friction, nano-structured coatings, cutting temperature and force, cutting tools wearing-out, thermo-emf, adhesive bonds strength.

Keywords:

wear-resistant complexes, friction, nano-structured coatings, cutting temperature and force, cutting tools wearing-out, thermo-emf, adhesive bonds strength

References

  1. Grigor’ev S.N. Metody povysheniya stoikosti rezhushchego instrumenta (Methods of cutting tools durability increasing), Moscow, Mashinostroenie, 2009, 368 p.

  2. Migranov M.Sh. Povyshenie iznosostoikosti instrumentov na osnove intensifikatsii protsessov adaptatsii poverkhnostei treniya pri rezanii metallov (Tools wear resistance increasing based on the friction surfaces adaptation processes intensifying when metals cutting), Ufa, Gilem, 2011, 232 p.

  3. Volosova M.A., Grechishnikov V.A., Pivkin P.M. et al. Rezhushchii instrument iz innovatsionnykh keramicheskikh materialov: izgotovlenie i primenenie (Cutting tools made of innovative ceramic materials: manufacture and application), Moscow, MGTU Stankin, 2020, 104 p.

  4. Vereshchaka A.A., Grigor’ev S.N. Teoreticheskoe obosnovanie vybora ratsional’noi arkhitektury i elementnogo sostava mnogosloino-kompozitsionnykh iznosostoikikh pokrytii (Theoretical substantiation of rational architecture and elemental composition of multilayer composite wear-resistant coatings selecting), Moscow, MGTU Stankin, 2020, 141 p.

  5. Tabakov V.P. Formirovanie iznosostoikikh ionno-plazmennykh pokrytii rezhushchego instrumenta (Formation of wear-resistant ion-plasma coatings of cutting tools), Moscow, Mashinostroenie, 2008, 311 p.

  6. Shuster L.Sh. Adgezionnoe vzaimodeistvie tverdykh metallicheskikh tel (Adhesive interaction of solid metal bodies), Ufa, Gilem, 1999, 199 p.

  7. Kurochkin A.V. Trudy MAI, 2013, no. 68. URL: https://trudymai.ru/eng/published.php?ID=41998

  8. Grubyi S.V. Vestnik mashinostroeniya, 2007, no. 7, pp. 38-42.

  9. Shulov V.A., Bytzenko O.A., Teryaev D.A. Deposition of nanocrystal corrosion-erosion resistant coatings on the surface of titanium alloy parts. Aerospace MAI Journal, 2010, vol. 17, no. 3, pp. 168-177.

  10. Gershman I.S. Razrabotka iznosostoikikh materialov s pomoshch’yu metodov neravnovesnoi termodinamiki na primere skol’zyashchikh kontaktov (Development of wear-resistant materials using methods of nonequilibrium thermodynamics on the example of sliding contacts dissertation), Doctor of technical sciences thesis. Moscow, VNIIZhT, 2006, 234 p.

  11. Kuzin V.V., Grigor’ev S.N., Volosova M.A. Novye ogneupory, 2013, no. 9, pp. 52-57.

  12. Vereschaka A.S., Grigoriev S.N., Tabakov V.P. et al. Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. Key Engineering Materials, 2014, vol. 581, pp. 68-73. DOI: 10.4028/www.scientific.net/KEM.581.68

  13. Fominski V.Yu., Grigoriev S.N., Celis J.P. et al. Structure and mechanical properties of W–Se–C/diamond-like carbon and W–Se/diamond-like carbon bi-layer coatings prepared by pulsed laser deposition. Thin Solid Films, 2012, vol. 520, no. 21, pp. 6476-6483. DOI: 10.1016/j.tsf.2012.06.085

  14. Sobol’ O.V., Andreev A.A., Grigoriev S.N. et al. Physical Characteristics, Structure and Stress State of Vacuum-Arc Tin Coating, Deposition on the Substrate when Applying High-Voltage Pulse During the Deposition. Problems of Atomic Science and Technology, 2011, no. 4, pp. 174-177.

  15. Gurin V.D., Grigor’ev S.N., Aleshin S.V., Semenov V.A. Vestnik mashinostroeniya, 2005, no. 9, pp. 19-22.

  16. Suhova N.A., Shekhtman S.R., Migranov M.S. Synthesis of nanostructured composite coatings in arc discharge plasma. Lecture Notes in Mechanical Engineering, 2019, pp. 1393–1399.

  17. Blinkov I.V., Volkhonskii A.O. Mul’tisloinye nanostrukturnye pokrytiya dlya rezhushchego instrumenta (Multilayer nanostructured coatings for cutting tools), Kishinev, LAP LAMBERT Academic Publishing, 2012, 124 p.

  18. Liu M.-J., Zhang M., Zhang X.-F. et al. Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition. Applied Surface Science, 2019, vol. 486, pp. 80-92. DOI: 10.1016/j.apsusc.2019.04.224

  19. Vereschaka A., Grigoriev S., Milovich F. et al. Investigation of tribological and functional properties of Cr,Mo-(Cr,Mo)N-(Cr,Mo,Al)N multilayer composite coating. Tribology International, 2021, vol. 155: 106804. DOI: 10.1016/j.triboint.2020.106804

  20. Migranov M.Sh., Migranov A.M., Minigaleev S.M., Shekhtman S.R. Tribological Properties of Multilayer Coatings for Cutting Tool. Journal of Friction and Wear, 2018, vol. 39, no. 3, рp. 245–250. DOI: 10.3103/S106836661803008X

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI