Micro-fracture of multilayer composites based on morphous-nanocrystalline metal alloy

Metallurgy and Material Science


DOI: 10.34759/vst-2022-3-246-252

Аuthors

Ushakov I. V.*, Oshorov A. D.**

National University of Science and Technology "MISIS", 4, Leninsky Prospect, Moscow, 119991, Russia

*e-mail: ushakoviv@mail.ru
**e-mail: oshorovayur@gmail.com

Abstract

The properties of thin hard films with a thickness of about 30 μm deposited on a polymer coating take a significant effect on the operation properties of such composite compounds. At the same time, there are no reliable and generally accepted methods for revealing the mechanical properties of such composite compounds and their claddings, especially for the case of multilayer coatings. The mechanical tests method, which is rather sensitive to the properties of these materials, is required for the quality control of such coatings. A special method for micro-fracturing viscosity at the local loading with the Vickers pyramid was tested earlier for the single-layer composite compound.

The presented study describes a new method for the micro-fracture viscosity coefficient computing of the multilayer composite compounds. The composite compound consists of the thin hard nano-crystalline metallic films and polymeric material. The micro-fracture viscosity of a multilayer composite is being determined by analyzing the features of the system of cracks formed under local loading by the Vickers pyramid. The authors show that the recommended formulas and algorithms for the micro-fracture viscosity determining may be employed for multilayer composites mechanical tests. It is demonstrated that the micro-fracture viscosity determining of the two-layer amorphous-nano-crystal film compounds may be applied to the multi-layer composite compounds with account for correction of the fracture micro-patterns analysis method and computational formulas.

Based on the experimental data, specificity of determining the coating micro-fracture viscosity of the multy-layer composite compounds is considered for the cases when local loading with the Vickers pyramid does not allow creating the standard pattern of cracks, united into symmetrical nested figures.

The article proposes the technique and formulas for micro-fracture viscosity calculation for the cases of linear and exponential dependence of the bulge height on loading on the indentor. Specifics of the micro-fracture viscosity coefficient calculating of multi-layer composite compounds when the bulge height depends non-monotonically on the loading on the indentor, which is the feature of many multilayer composite compounds is being considered separately.

Keywords:

micro-fracture of composites, multylayer composite, microindentation of composites, microfracture viscosity

References

  1. Bukichev Y.S., Bogdanova L.M., Spirin M.G., Shershnev V.A., Shilov G.V., Dzhardimalieva G.I. Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: synthesis, microstructure and properties. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 224-237. DOI: 10.34759/vst-2021-2-224-237

  2. Tudupova A.N., Strizhius V.E., Bobrovich A.V. Computational and experimental evaluation of fatigue life characteristics of the transport category aircraft composite wing panels. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 21-29. DOI: 10.34759/vst-2020-4-21-29

  3. Bokhoeva L.A., Baldanov A.B., Chermoshentseva A.S. Optimal structure of multi-layer wing console of unmanned aerial vehidle with experimental validation. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 65-75. DOI: 10.34759/vst-2020-1-65-75

  4. Shinkin V.N. Springback coefficient of round steel beam under elastoplastic torsion, CIS Iron and Steel Review, 2018, vol. 15, no. 1, pp. 23-27. DOI: 10.17580/cisisr.2018.01.05

  5. Shinkin V.N. Simple analytical dependence of elastic modulus on high temperatures for some steels and alloys. CIS Iron and Steel Review, 2018, vol. 15, no. 1, pp. 32-38. DOI: http://dx.doi.org/10.17580/cisisr.2018.01.07

  6. Lawn B.R., Marshall D.B. Hardness, Toughness, and Brittleness: An Indentation Analysis. Journal of the American Ceramic Society, 2010, vol. 62, no. 7-8, pp. 347-350. DOI: 10.1111/j.1151-2916.1979.tb19075.x

  7. Zok F.W., Collier V.E., Begley M.R. Coating recession effects in ceramic composite strength. Journal of the Mechanics and Physics of Solids, 2021, vol. 156: 104608. DOI: 10.1016/j.jmps.2021.104608

  8. Bannykh O.A., Sheftel E.N., Krikunov A.I., Kaputkin D.E., Usmanova G.Sh. Thin film soft magnetic Fe-Zr-Al-N-O alloys. Materials Science Forum, 2001, vols. 373-376, pp. 777-780. DOI: 10.4028/www.scientific.net/MSF.373-376.777

  9. Kaputkin D.E. Metally, 2007, no. 1, pp. 83-86.

  10. Nie J., Wang J., Gou S., Zhu Y., Fan J. Technological development and engineering applications of novel steel-concrete composite structures. Frontiers of Structural and Civil Engineering, 2019, vol. 13, no. 11. DOI: 10.1007/s11709-019-0514-x

  11. Wang J., Li L., Lin P., Wang J. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition. Optics & Laser Technology, 2018, vol. 105, pp. 195-206. DOI: 10.1016/j.optlastec.2018.03.009

  12. Zhou K., Sun H., Enos R., Zhang D., Tang J. Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties. Computational Materials Science, 2021, vol. 197: 110663. DOI: 10.1016/j.commatsci.2021.110663

  13. Konovalenko I.S., Shil’ko E.V., Ovcharenko V.E., Psakh’e S.G. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty), 2019, vol. 21, no. 1, pp. 93-107. DOI 10.17212/1994-6309-2019-21.1-93-107

  14. Novikov E.V., Lakhno A.V., Shamanov R.S. Mezhdunarodnyi tekhniko-ekonomicheskii zhurnal, 2018, no. 5, pp. 66-71.

  15. Sokolova S.V. Novye materialy i tekhnologii v mashinostroenii, 2019, no. 29, pp. 142-145.

  16. Ushakov I.V., Safronov I.S.. Patent RU 2494039 C1, 27.09.2013.

  17. Ushakov I.V., Batomunkuev A.Yu. Patent RU 2561788 C1, 10.09.2015.

  18. Ushakov I.V., Oshorov A.D. Viscosity of microdestruction of multilayer composite and method of its revealing. Materials Science Forum, 2022, vol. 1052, pp. 110-115. DOI: 10.4028/p-5q4060

  19. Ushakov I.V., Oshorov A.D. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii, 2021, vol. 11, no. 4, pp. 95–107. DOI: 10.21869/2223-1528-2021-11-4-95-1076

  20. Jönsson B., Hogmark S. Hardness measurements of thin films. Thin Solid Films, 1984, vol. 114, no. 3, pp. 257-269. DOI: 10.1016/0040-6090(84)90123-8

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI