The airscrew effect on the aerodynamic characteristics and hinge moments of the deflected wing system under icing conditions

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-7-21

Аuthors

Belousov I. Y.1, Kornushenko A. V.2, Kudryavtsev O. V.1*, Pavlenko O. V.2**, Reslan M. G.3***, Kinsa S. B.3

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
3. Moscow Institute of Physics and Technology (National Research University), 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

*e-mail: kudryavtsevov@gmail.com
**e-mail: olga.v.pavlenko@yandex.ru
***e-mail: reslan.mostafa97@gmail.com

Abstract

Among various environmental impacts on the aircraft, icing is the most dangerous one. Despite the almost century-old history of this problem research, accounting for and elimination of icing is still an actual task.

The purpose of the presented numerical study consists in researching the impact of the airscrew interference and a straight wing of a high aspect ratio of a solar battery powered aircraft on the aerodynamic characteristics and hinge moments values of the wing-flap system deflections under icing conditions.

Numerical study of the airscrew, installed at the wing tip of a high aspect ratio wing, impact on aerodynamic characteristics and hinge moments of the wing-flap system, deflected to the takeoff position (= 15°), was performed by the program based on the Reynolds-averaged Navier-Stokes equations solving, at the aircraft under the icing conditions. Calculated study was performed with the aircraft, which aerodynamic layout was realized by the classical scheme with cantilever high-set wing with the aspect ratio of = 23.4. Engine nacelles were placed on the wingtip. The airscrews rotation frequency was of N = 15000 rpm. The airscrews rotating direction corresponds to the vortex sheet folding from the wing tip.

Numerical studies were conducted without airscrews and with operating two-bladed airscrews, both without aircraft icing and with it. Initially the ice shapes without blow-off and with the blow-off by the airscrew were calculated. The calculation revealed that the presence of a rotating airscrew had a great impact on the ice growth formation on the wing. The ice thickness on the wing without airscrew is almost the same over the entire surface, while a high barrier of horn-shaped ice is being added to the existing one on the wing beside the tip of the airscrew blade.

Further, aerodynamic characteristics were calculated, and a hinge moment was obtained for each part of deflected wing-flap system. These calculations were performed at the angles of attack of −5°15° with the Mach number of М = 0.15 and Reynolds number of Re = 0.35·106.

Calculation results revealed that aircraft bearing surfaces icing reduced maximum lift force and increase pitching moment on pitch-up, as well as contributes to the aircraft drag increase, especially with the airscrews blow-off beyond stall angles.

The airscrew running under conditions of icing leads to the detachable zone size increase, which grows with the angle of attack increase.

The article demonstrates that icing may decrease the hinge moment of the wing-flap system. This occurs as a consequence of the overgrown ice forming such a shape below the surface of the deflected wing-flap system, which decreases pressure on its windward side. The value of the total force, acting on the deflected wing-flap system, decreases herewith, and the center of pressure of the deflected control surface is being shifted closer to the rotation axis.

Keywords:

extra-high aspect ratio wing, wing icing, pulling airscrew, hinge moments, wing-flap system

References

  1. Mikhailovskiy K.V., Baranovski S.V. Accounting for Icing in the Design Analysis of Polymer Composite Wings. BMSTU Journal of Mechanical Engineering, 2019, no. 3(708), pp. 61–70. DOI: 10.18698/0536-1044-2019-3-61-70
  2. Andreev G.T., Vasin I.S. Nauchnyi vestnik MGTU GA. Seriya Aeromekhanika i prochnost’, 2006, no. 97, pp. 62-65.
  3. Babulin A.A., Bol’shunov K.Yu. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID= 29088
  4. Zhigulin I.E., Emel’yanenko K.A., Sataeva N.E. Studying ultrasonic oscillations impact on the surface roughness at the electrical discharge machining. Aerospace MAI Journal, 2021, vol. 28, no. 1, pp. 200-212. DOI: 10.34759/vst-2021-1-200-212
  5. Zhbanov V.A., Kashevarov A.V., Miller A.B. et al. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104140
  6. Ezrokhi Yu.A., Kadzharduzov P.A. Working process mathematical modelling of aircraft gas turbine engine in condition of elements icing of its air-gas channel. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 123-133. DOI: 10.34759/vst-2019-4-123-133
  7. Pavlenko O.V. Tekhnika Vozdushnogo Flota, 2006, no. 3–4, pp. 47–52.
  8. Gurbacki H.M., Bragg M.B. Sensing Aircraft Icing Effects by Unsteady Flap Hinge-Moment Measurement. Journal of Aircraft, 2001, vol. 38, no. 3, pp. 575 — 577. DOI: 10.2514/2.2801
  9. Baikov S.V., Zhigulin I.E., Skidanov S.N. Nauka i biznes: puti razvitiya, 2019, no. 2(92), pp. 114-120.
  10. Tsipenko V.G., Shevyakov V.I. Promotion of transport airсraft flight safety with account for updated certification requirements for icing conditions. Civil Aviation High Technologies, 2019, vol. 22, no. 3,
    pp. 45–56. (In Russ.) DOI: 10.26467/2079-0619-2019-22-3-45-56
  11. Bragg M.B., Hutchison T., Merret J. et al. Effect of Ice Accretion on Aircraft Flight Dynamics. 38thAIAA Aerospace Sciences Meeting & Exhibit (10-13 January 2000; Reno, NV, USA). AIAA 2000-0360. DOI: 10.2514/6.2000-360
  12. Klemenkov G.P., Prikhod’ko Yu.M., Puzyrev L.N., Kharitonov A.M. Teplofizika i aeromekhanika, 2008, vol. 15, no. 4, pp. 563–572.
  13. Addy H.E., Broeren A.P., Zoeckler J.G., Lee S. A wind tunnel study of icing effects on a business jet airfoil. 41st Aerospace Sciences Meeting and Exhibit (6-9 January 2003; Reno, Nevada). AIAA 2003-727. DOI: 10.2514/6.2003-727
  14. Gulimovskii I.A., Greben’kov S.A. Applying a modified surface mesh wrapping method for numerical simulation of icing processes. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 29-36. DOI: 10.34759/vst-2020-2-29-36
  15. Pavlenko O.V., Pigusov E.A. Application specifics of tangential jet blow-out on the aircraft wing surface in icing conditions. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 7-15. DOI: 10.34759/vst-2020-2-7-15
  16. Borna A., Habashi W.G., McClure G. Numerical Study of Influence of Ice Location on Galloping of an Iced Conductor. The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (26-30 August 2012; Seoul, Korea), pp. 122–132. URL: http://www.i-asem.org/publication_conf/acem12/M3A-3.pdf
  17. Cao Y., Ma C., Zhang Q., Sheridan J. Numerical simulation of ice accretions on an aircraft wing. Aerospace Science and Technology, 2012, vol. 23, no. 1, pp. 296–304. DOI: 10.1016/j.ast.2011.08.004
  18. Li S., Paoli R. Modeling of Ice Accretion over Aircraft Wings Using a Compressible OpenFOAM Solver. Hindawi. International Journal of Aerospace Engineering, 2019, no. 6. Article ID 4864927. DOI: 10.1155/2019/4864927
  19. Amelyushkin I.A., Kudrov M.A., Morozov A.O., Shcheglov A.S. Mathematical models and methods of numerical investigation of processes which accompany aircraft icing. Proceedings of the Institute for System Programming of the RAS, 2021, vol. 33, no. 5, pp. 237–247. (In Russ.) DOI: 10.15514/ISPRAS-2021-33(5)-14
  20. Habashi W.G., Aubй M., Baruzzi G. et al. FENSAP-ICE: A Fully-3D in-flight icing simulation system for aircraft, rotorcraft and UAVs. 24th International Congress of the Aeronautical Sciences (ICAS), 2004. URL: http://www.icas.org/icas_archive/icas2004/papers/608.pdf
  21. Fevralskih A. Wing icing of ground-effect vehicle: numerical simulation. Transactions of the Krylov State Research Centre, 2019, vol. 4, no. 390, pp. 117-124. DOI: 10.24937/2542-2324-2019-4-390-117-124
  22. Ramakrishna N., Kumar V.P. Aerodynamic Effect Caused by Ice Aircraft Wing. International Journal of Advanced Technology and Innovative Research (IJATIR), 2017, vol. 9, no. 4, pp. 547-553. URL: http:
    //www.ijatir.org/uploads/436521IJATIR14114-107.pdf
  23. Aksenov A.A., Byvaltsev P.M., Zhluktov S.V. et al. Numerical simulation of ice accretion on airplane surface. AIP Conference Proceedings, 2019, vol. 2125, no. 1. DOI: 10.1063/1.5117395
  24. Vinogradov O.N., Kornushenko A.V., Pavlenko O.V. et al. Influence of propeller diameter mounted at wingtip of high aspect ratio wing on aerodynamic performance. Journal of Physics: Conference Series. Vol. 1959. The International Scientific Conference on Mechanics «The Ninth Polyakhov’s Reading» (09-12 March 2021; Saint Petersburg, Russia). DOI: 10.1088/1742-6596/1959/1/012051
  25. Alesin V.S., Gubsky V.V., Pavlenko O.V. Fuselage and duct interference effect on maximum thrust of the air pushing propeller-duct thruster. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 7-18. DOI: 10.34759/vst-2020-1-7-18
  26. Pavlenko O.V. Uchenye zapiski TsAGI, 2016, vol. XLVII, no. 1, pp. 62–68.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI