Energy absorber selection specifics for shock-absorbing of spacecraft with low inertial characteristics

Aeronautical and Space-Rocket Engineering

DOI: 10.34759/vst-2022-4-36-50


Petrov Y. A., Sergeev D. V.*, Makarov V. P.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia



A spacecraft touchdown on the surface of the planets and their satellites is one of the crucial stages of the flight, since the surfaces of the planets are insufficiently studied, and the spacecraft motion kinematic parameters may vary over a wide range.

Landing gear, which should ensure touchdown with acceptable overloads and stable spacecraft position on the surface, is employed while touchdown for the spacecraft dampening.

The landing gear consists of three or four supports, depending on the power scheme of the landing mechanism.

The spacecraft dampening is being realized by the energy absorbers, placed in the landing mechanism shock absorbers. A rod, honeycomb, pipe and tape (flat rod), which absorb the energy of a spacecraft while touchdown due to the plastic deformation, are being applied as one-time operation energy absorbers.

Accounting for the landing gear elasticity will allow concrete determining of the dynamic loads and the spacecraft stability area while touchdown, which is specially important while touchdown on the comets or small-gravity satellites.

When solving the touchdown dynamics problem, the equations of motion of the landing gear supports are being used, with account for the elastic deformation of the structure.

Accounting for the elastic deformation energy accumulated in the landing devices elements and the places of their attachment to the body will allow determining the dynamic loads on the device and structural elements, as well as correctly determining the area of the spacecraft stability to overturning.

The presence of the developed shock absorber structure with the energy absorber, such as tape; kinematic scheme of the landing gear support, as well as an algorithm for the problem of a spacecraft touchdown solution allows selecting basic design parameters of the landing gear with account for limitations. These parameters will ensure safe and stable touchdown without overturning of a spacecraft with low inertial characteristics.

When determining the spacecraft touchdown stability area, preliminary design parameters of the supports selected according to statistics are used, and a series of calculations are being performed on the touchdown dynamics, varying by the factors listed above.

An energy absorber is a tape employed in the design of the landing gear supports, which ensures cushioning of a spacecraft with low inertial characteristics when touchdown on either planets or their satellites, as well as asteroids, with account for restrictions.

Computing cases of overloads and a spacecraft stability were determined by the landing gear design parameters varying obtained from the spacecraft touchdown dynamics problem solution. If the landing mechanism layout of the spacecraft with low inertial characteristic does not allow placing the landing gear support with the recommended requirement to the base to the center of masses ratio, then it is advisable to employ clamping emgines.

For instance, when the Rosetta spacecraft landed on the Churyumov-Gerasimenko comet, a landing device containing a harpoon and clamping engines was applied.


planets surface landing, spacecraft landing device, energy absorber, spacecraft shock absorber


  1. Kemurdzhian A.L., Gromov V.V., Cherkasov I.I., Shvarev V.V. Avtomaticheskie stantsii dlya izucheniya poverkhnostnogo pokrova Luny (Automatic stations for studying the surface cover of the Moon), Moscow, Mashinostroenie, 1976, 200 p.
  2. Bazilevskii A.T., Grigor’ev E.I., Ermakov S.N. et al. Proektirovanie spuskaemykh avtomaticheskikh kosmicheskikh apparatov. Opyt razrabotki dialogovykh protsedur (Designing descent automatic spacecraft. Experience of development of dialog procedures), Moscow, Mashinostroenie, 1985, 264 p.
  3. Bazhenov V.I., Osin M.S. Posadka kosmicheskikh apparatov na planety (Spacecraft planets touchdown), Moscow, Mashinostroenie, 1978, 159 p.
  4. Petrov Yu.A., Makarov V.P., Kolobov A.Yu., Aleshin V.F. Nauka i obrazovanie: nauchnoe izdanie MGTU
    im. N.E. Baumana
    , 2010, no. 4. URL:
  5. Tsygankov O.S. Patent RU 2725103 C1, 29.06.2020.
  6. Belitskii D.S., Zharkov M.N., Shchiblev Yu.N. et al. Patent RU 2521451 C2, 27.06.2014.
  7. Gushchin V.N., Pankratov B.M., Rodionov A.D. Osnovy ustroistva i konstruirovaniya kosmicheskikh apparatov (Fundamentals of spacecraft arrangement and design), Moscow, Mashinostroenie, 1992, 256 p.
  8. Gushchin V.N. Osnovy ustroistva kosmicheskikh apparatov (Fundamentals of the spacecraft arrangement), Moscow, Mashinostroenie, 2003, 272 p.
  9. Elementy uprugo-plasticheskie amortizatorov plasticheskogo tipa. Metodika rascheta. OST 92-9011-78 (Industry Standard. Elastic-plastic elements of plastic-type shock absorbers. Calculation methodology. OST 92-9011-78), Moscow, MO SSSR, 1978, 247 p.
  10. Ostoslavskii I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel’nykh apparatov (Flight dynamics. Aircraft Trajectories), Moscow, Mashinostroenie, 1969, 499 p.
  11. Bukhgol’ts N.N. Osnovnoi kurs teoreticheskoi mekhaniki. V 2 chastyakh (Basic course of theoretical mechanics. In 2 parts), Moscow, Nauka. Part 1, 1965, 468 p. Part 2, 1966, 332 p.
  12. Loitsyanskii L.G., Lur’e A.I. Kurs teoreticheskoi mekhaniki. T. 2 Dinamika (Course of the theoretical mechanics. Vol. 2. Dynamics), Moscow, Drofa, 2006, 720 p.
  13. Gantmakher F.R. Teoriya matrits (Theory of matrices), Moscow, Fizmatlit, 2004, 559 p.
  14. 14. Bakulin V.N., Borzykh S.V., Voronin V.V. The mathematical simulation of the spacecraft landing in the area of its contact with surface. Aerospace MAI Journal, 2011, vol. 18, no. 4, pp. 38-46.
  15. Malyshev V.V., Starkov A.V., Titkov M.A. Trudy MAI, 2015, no. 79. URL:
  16. Bakulin V.N., Kokushkin V.V., Borzykh S.V., Voronin V.V. Dynamics of process of landing of the spacecraft winh an landing gear consisting of arm and cord. Aerospace MAI Journal, 2012, vol. 19, no. 5, pp. 45-50.
  17. Shcheglov G.A., Lukovkin R.O. Dynamic analysis of the plastically deformable spacecraft lander leg. Aerospace MAI Journal, 2014, vol. 21, no. 3, pp. 63-72.
  18. Bakulin V.N., Borzykh S.V., Rodionov O.L., Markov M.V. III Mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika-2004» (01-04 November 2004), Moscow, MAI, pp. 71-72.
  19. Buslaev S.P. Kosmicheskie issledovaniya, 1987, no. 2, pp. 186-192.
  20. Mikishev G.N. Eksperimental’nye metody v dinamike kosmicheskikh apparatov (Experimental methods in the spacecraft dynamics), Moscow, Mashinostroenie, 1978, 248 p. — informational site of MAI

Copyright © 1994-2024 by MAI