Transport category aircraft layout forming with the modified computer-aided design system

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-51-66

Аuthors

Leshikhin I. I.*, Sonin O. V.**

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia

*e-mail: redantfly@mail.ru
**e-mail: velomobil@yandex.ru

Abstract

The work deals with the study and modification of the Automated Design Dialogue System (ARDIS) for the subsonic passenger aircraft design to create an extra possibility of calculating the cargo aircraft characteristics.

The ARDIS is meant for performing calculations at the initial stage of the design (concept selecting, requirements formulating and draft proposal developing), when the state of the project is marked by many uncertainties, and it is necessary to consider a large number of options and perform their parametric studies.

The methodological basis for the ARDIS modification is application of computational algorithms for cargo aircraft characteristics, including ramp ones, and their software implementation.

Proceeding to the ARDIS software package modifying, a part of modules, subjected to the changes, was separated out, while the other part of the modules, which are not planned for modification at this stage, but their application may affect the result of characteristics computing of the transport category aircraft, remained unchanged. Such modules as Geometry, Aerodynamics, Power Plant, Flight Performance and Mass relate to these kind of modules. They were studied with description and detailed block-diagrams compiling.

The ARDIS modification assumes not only direct editing of the program source code, but also introduction of new variations of the features that will allow the ARDIS to switch algorithmic branches for calculating characteristics of both cargo and passenger aircraft.

The new types of transport aircraft introduction to ARDIS allowed modifying the program code responsible for computing characteristics corresponding to these types. Specifics of new types of aircraft affect the change in the mass of the aircraft and, first of all, the change in the mass of the fuselage. Algorithms for computing the weight of the longitudinal framing, windows, doors, hatches, sealing and the weight of the floor of the passenger cabin or cargo compartment have undergone partial modification. Algorithms for computing all other characteristics unique to the cargo-type aircraft have been redeveloped.

Computations in the modified system of computer-aided design (ARDIS) were performed on the example of the prospective transport aircraft in passenger version, and a cargo aircraft. As the result, the aircraft specifications were obtained, which were verified with the prospect characteristics.

Keywords:

passenger and transport aircraft computer-aided design (CAD) system, ARDIS, multidisciplinary calculations, modification of comprehensive program

References

  1. Denisov V.E., Kargopol’tsev V.A Shkadov L.M., Udzhukhu A.Yu. Problemy sozdaniya perspektivnoi aviatsionno-kosmicheskoi tekhniki. Sbornik statei, Moscow, Fizmatlit, 2005, pp. 389-400.
  2. Udzhukhu A.Yu., Evstifeev V.V., Lazarev V.V. et al. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM «Avtomatizirovannaya Raschetnaya Dialogovaya Sistema (ARDIS)», No. 2010611209, 19.02.2010 (Certificate of State registration of computer programs «Automated Calculation Dialogue System (ARDIS)», no. 2010611209, 19.02.2010).
  3. Sidelnikova O.V., Matveev Y.A. Complex analysis constructional and technical decisions of perspective flying machine subsystem. Aerospace MAI Journal, 2011, vol. 18, no. 1, pp. 27-32.
  4. Kovalenko A.I., Petrash V.Y. Formation of design solutions of unmanned aerial vehicles in the program-information environment of the knowledge base. Aerospace MAI Journal, 2012, vol. 19, no. 4, pp. 65-72.
  5. Badyagin A.A., Eger S.M., Mishin V.F. et al. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1972, 516 p.
  6. Eger S.M. Mishin V.F., Liseitsev N.K. et al. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1983, 616 p.
  7. Denisov V.E. Mashinostroenie. Entsiklopediya. T. IV-21. Samolety i vertolety. Kniga 1. Aerodinamika, dinamika poleta i prochnost’ (Machine Building Encyclopedia, vol. IV-21, Aerodynamics, Flight Dynamics and Strength), Moscow, Mashinostroenie, 2002, pp. 756-772.
  8. Bondarev A.V., Vasin S.S., Kovalev I.E. et al. Materialy IV Nauchno-prakticheskoi konferentsii «Upravlenie nauchnymi issledovaniyami i razrabotkami. Gosudarstvo i nauka: novye modeli upravleniya — 2018» (26 November 2018; Moscow), Moscow, IPU RAN, 2019, pp. 41-60.
  9. Gvozdev N.D., Konopleva V.M., Vasin S.S. Materialy XLV Mezhdunarodnoi molodezhnoi nauchnoi konferentsii «Gagarinskie chteniya — 2019», Moscow, MAI, 2019, p. 42.
  10. Vasin S.S., Gusarova N.A., Kurochkin D.S. Materialy XLV Mezhdunarodnoi molodezhnoi nauchnoi konferentsii «Gagarinskie chteniya — 2019», Moscow, MAI, 2019, p. 41.
  11. Bondarev A.V., Vasin S.S., Konopleva V.M. et al. Materialy XXX Nauchno-tekhnicheskoi konferentsii po aerodinamike (25–26 April 2019; p. Volodarskogo), Zhukovskii, TsAGI, 2019, p. 63.
  12. Bolsunovskii A.L., Bondarev A.V., Vasin S.S. et al. Materialy XXIX Nauchno-tekhnicheskoi konferentsii po aerodinamike (01-02 March 2018; d. Bogdanikha), Zhukovskii, TsAGI, 2018, p. 62.
  13. Sonin O.V. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM " Avtomatizirovannaya sistema trekhmernoi komponovki fyuzelyazha passazhirskogo samoleta (AVTOKOM)«, no. 2010611470, 19.02.2010 (Certificate of State registration of computer programs «Computer-aided system of 3D design of passenger aircraft fuselage (AUTOCOM)», no. 2010611470, 19.02.2010).
  14. Torenbeek E. Synthesis of subsonic airplane design. Springer, 1982, 620 p.
  15. Computer Aided Preliminary Design of Aircraft, https://www.luftbau.tu-berlin.de/menue/forschung/abgeschlossene_projekte/visual_capda/
  16. Seeckt K. Aircraft Preliminary Sizing with PreSTo. Re-Design of the Boeing B777-200LR. Department of Aeronautics, Kungliga Tekniska Hцgskolan (KTH, Royal Institute of Technology), Stockholm, Sweden, 2008, 76 s.
  17. Eger SM., Liseitsev N.K., Samoilovich O.S. Osnovy avtomatizirovannogo proektirovaniya samoletov (Fundamentals of aircraft computer—aided design), Moscow, Mashinostroenie, 1986, 232 p.
  18. Osin M.I. Metody avtomatizirovannogo proektirovaniya letatel’nykh apparatov (Methods of aircraft computer-aided design), Moscow, Mashinostroenie, 1984, 167 p.
  19. Volodin V.V. Avtomatizatsiya proektirovaniya letatel’nykh apparatov (Automation of aircraft design), Moscow, Mashinostroenie, 1991, 256 p.
  20. Pukhov A.A. Avtomatizatsiya proektirovaniya dozvukovykh gruzopassazhirskikh samoletov (Automation of subsonic cargo and passenger aircraft design), Abstract of doctor’s thesis, Moscow, MAI, 2006, 42 p.
  21. Sonin O.V. Automated System for Three-Dimensional Layout and Its application in the Problems of Prospective Civil Aircraft Configuration Design. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 41-55. DOI: 10.34759/vst-2022-3-41-55
  22. Byushgens G.S. (ed) Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of mainline aircraft), Moscow, TsAGI, 1995, pp. 186-235.
  23. Petrov V.K., Uskov A.S. Trudy TsAGI. Issue 2175, Moscow, TsAGI, 1983, pp. 10-19.
  24. Arutyunov A.G. Metodika opredeleniya ratsional’nogo oblika kommercheskogo tyazhelogo rampovogo gruzovogo samoleta na etape kontseptual’nogo proektirovaniya iz usloviya ego pribyl’nosti (Rational configuration determining of commercial heavy ramp aircraft at the stage of conceptual design in terms of its profitability), Doctor’s thesis, Moscow, MAI, 2017, 252 p.
  25. Lebedev A.V., Fedorenko I.P., Goryachii A.Ya. Trudy TsAGI. Issue 1829, Moscow, TsAGI, 1977, 24 p.
  26. Leshikhin I.I., Sonin O.V. Materialy XXX Nauchno-tekhnicheskoi konferentsii po aerodinamike (25–26 April 2019; p. Volodarskogo), Zhukovskii, TsAGI, 2019, pp. 145-146.
  27. Kuksa V.I., Leshikhin I.I., Sonin O.V. Materialy XIX Mezhdunarodnoi shkoly-seminara «Modeli i metody aerodinamiki» (4-11 June 2019; Evpatoriya), Zhukovskii, TsAGI, 2019, p. 86.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI