Aeronautical and Space-Rocket Engineering
DOI: 10.34759/vst-2022-4-85-93
Аuthors
GNPP "Region", 13a, Kashirskoe shosse, Moscow, 115230, Russia
e-mail: vladimir.maskaykin@mail.ru
Abstract
The article deals with the issue of thermal insulation properties improving of the unmanned aerial vehicle (UAV) operating under conditions of extreme temperatures. Basic conditions for the structural layout elaboration ensuring high indices of the UAV thermal insulation without application of thermal insulation protective means are being considered.
For this issue solving, theoretical studies of the unsteady heat exchange of the UAV unit were being performed with account for various diameters and sections under the impact of extremely low and high temperatures. The said studies solutions were being performed by a numerical method, namely a finite difference method.
The results of the theoretical study point out that the UAV high thermal insulation indicators require that its structural layout ensuring the gas interlayer between the hull and the unit constituent parts. For the small diameters being considered in the article (less than 500 mm), the average thickness of the gas interlayer under the impact of the extremely low temperatures should be 8 mm, and for large diameters (500 mm and more) it should be 12 mm and higher. Insuring high indicators of the UAV thermal insulation under the impact of extremely high temperatures require the average thickness of the gas interlayer between the hull and the unit constituent parts by the following dependence: it should be 20, 30, 60 and 120 mm for the diameters of respectively 100, 200, 300 and 500 mm.
The said changes in the UAV unit structure allow its thermal isolation indicators sixfold improving without application of thermal insulation protective means.
Keywords:
UAV thermal insulation properties, thermal insulation materials, extreme temperature conditions, UAV structural layout, conjugated heat transfer in a horizontal cylinderReferences
- Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. Aviatsionnye materialy i tekhnologii, 2011, no. 4, pp. 8–14.
- Ivakhnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 380–385.
- Bukichev Y.S., Bogdanova L.M., Spirin M.G., Shershnev V.A., Shilov G.V., Dzhardimalieva G.I. Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: synthesis, microstructure and properties. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 224-237. DOI: 10.34759/vst-2021-2-224-237
- Ramamurthi S., Ramamurthi M. Aerogel matrix composites. Patent US 5306555 A, 26.04.1994.
- Frank D., Zimmermann A. Aerogel composites, process for producing the same and their use. Patent US 5789075 A, 04.08.1998.
- Ryu J. Flexible aerogel superinsulation and its manufacture. Patent US 6068882, 30.05.2000.
- Stepanian C.J., Gould G.L., Begag R. Aerogel composite with fibrous batting. Patent US 7078359, 18.07.2006.
- Lee K.P., Gould G.L., Gronemeyer W., Stepanian C.J. Advanced gel sheet production. Patent US 7780890 B2, 24.08.2010.
- Evans O.R., deKrafft K.E., Zafiropoulos N.A. et al. Hydrophobic Аerogel Мaterials. Patent US 9868843 B2, 16.01.2018.
- Thermal insulation with aerogels. Aspen Aerogels Company. URL: www.aerogel.com
- Heng V., DiChiara R.A., Chu E., Zorger D. Thermal insulation assemblies and methods the fabrication the same. Patent US 8357258 B2, 22.01.2013.
- Maheshwari M., Fang X. Laminate thermal insulation blanket for aircraft applications and process therefor. Patent US 20120308369 A1, 06.12.2012.
- Shen X., Wu X., Cui S., Shao F. Preparation method of mullite-fibrofelt-reinforced SiO2-Al2O3 aerogel composite heat-insulating material. Patent CN 104844149 A, 19.08.2015.
- Maskaikin V.A., Makhrov V.P. Teplovye protsessy v tekhnike, 2021, vol. 13, no. 5, pp. 230-237. DOI: 10.34759/tpt-2021-13-5-230-237
- Maskaykin V.A., Makhrov V.P. Thermal conductivity research of the aircraft heat-insulating skin under flight conditions. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 118-130. DOI: 10.34759/vst-2021-4-118-130
- Prokof’ev M.V., Zhuravlev S.Y. The study of nano-dispersed graphite particles size and shape effect on electrical conductance and thermal resistance of carbonaceous coating. Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 167-174.
- Abashev V.M., Demidov A.S., Eremkin I.V., Kiktev S.I., Khomovskii Y.N. Temperature stresses in a cylindrical shell of carbon fibers and the contact problem of heat transfer. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 7-13.
- Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Novye materialy i tekhnologii, 2013, no. 5, pp. 75-81.
- Tomak V.I., Burkov A.S., Rytsarev A.M., Tovstonog V.A. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2020, vol. 89, no. 2, pp. 99-116. DOI: 10.18698/1812-3368-2020-2-99-116
- Sheremet M.A. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), pp. 102-111.
- Sheremet M.A. Prikladnaya mekhanika i tekhnicheskaya fizika, 2012, vol. 53, no. 4(314),
pp. 112-123. - Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti (Difference methods for solving heat conduction problems), Tomsk, TPU, 2007, 172 p.
- Krainov A.Yu., Min’kov L.L. Chislennye metody resheniya zadach teplo- i massoperenosa (Numerical methods for solving problems of heat and mass transfer), Tomsk, STT, 2016, 92 p.
- Samarskii A.A., Vabishchevich P.N. Vychislitel’naya teploperedacha (Computational heat transfer), Moscow, Editorial URSS, 2003, 785 p.
- Samarskii A.A. Teoriya raznostnykh skhem (Theory of difference schemes), Moscow, Nauka, 1989, 616 p.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |