Unmanned aerial vehicle concept for Mars exploration

Aeronautical and Space-Rocket Engineering

DOI: 10.34759/vst-2022-4-104-115


Karpovich E. А.1*, Gueraiche D. 2**, Han W. 2, Tolkachev M. А.2

1. Irkut Corporation, 68, Leningradskiy prospect, Moscow, 125315, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: karpovichea@mai.ru
**e-mail: guaero.tech@gmail.com


In this study, we explored and analyzed how the design issues stemming from the Mars specific conditions have been addressed by the previous authors. The identified design trends, as well as the presented historical data on the previous Mars aircraft projects can be used as a basis for determining a future Mars aircraft mission scenario.

For several decades, scientists have been exploring Mars using orbiting spacecraft and rovers. Orbiters cover large areas and provide images of the planet surface with a resolution limited to a few meters, while rovers can analyze the composition of soil and rocks. In contrast, an aircraft flying at a low altitude above the surface of Mars will carry out a whole range of specific scientific research, mapping an area several orders of magnitude larger than a rover, with a resolution much higher than the resolution offered by modern satellites, as well as gathering valuable atmospheric data at different altitudes.

In contrast to the previous publications, the focus of the current investigation is to identify the relation between the Martian specific conditions and the design options adopted for exiting Martian aircraft projects. This will enable us to justify the design of a new fixed-wing Mars aircraft and to compose a set of relevant requirements to start the design process.

The recent improvements related to aerodynamic design, concepts of engines, energy storage and materials, have expanded the range of options for Martian unmanned aerial vehicles.

Possible missions of a future Mars science aircraft include performing a climatic, mineralogical, thermophysical and magnetic study of Mars.

The design process will be guided by the specific Mars environmental conditions (density, speed of sound, temperature, Reynolds number, dust storms, electrical phenomena, carbon dioxide carving). For a lander, Martian rugged terrain will exclude the conventional take-off and landing option. The need to deliver the aircraft to Mars and expose it to the space radiation will affect the aircraft aerodynamic layout, structural design, weight specification. The expected operating area, altitude, and season may significantly affect the design decisions in terms of aircraft configuration, geometry and total mass.

Finally, the flow field on a Mars airplane is expected to be highly complicated with a strong interaction of viscous and compressibility effects. This makes the numerical simulation of the aircraft operating in Martian atmosphere extremely challenging.

Nevertheless, the concept of a long-endurance aircraft, either solar or radioisotope powered, featuring foldable or inflatable wings and capable of flying in the Martian atmosphere seems feasible and can be considered as an option for future Mars exploration missions.


Mars science UAV, low-Reynolds number airfoils, Martian aircraft aerodynamic configuration


  1. von Ehrenfried M. Perseverance and the Mars 2020 Mission. Follow the Science to Jezero Crater. 1st ed., Springer, 2022, 276 p.
  2. Reed R.D. High-flying Mini-sniffer RPV-Mars Bound. Astronautics and Aeronautics, 1978, vol. 16,
    pp. 26-39.
  3. Gasbarre J.F., Dillman R.A. Preliminary design and analysis of the ARES atmospheric flight vehicle thermal control system. SAE Technical Paper 2003-01-2686, 2003. DOI: 10.4271/2003-01-2686
  4. A concept study of a remotely piloted vehicle for Mars exploration. Contractor Report NASA-CR-157942, 2013.
  5. Walker D.D. Preliminary Design, Flight Simulation, and Task Evaluation of a Mars Airplane. University of Tennessee, Knoxville, TN, USA, 2008.
  6. Kearns J., Usui M., Smith S. et al. Development of UV-Curable Inflatable Wings for Low-Density Flight Applications. 45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (19-22 April 2004; Palm Springs, California). DOI: 10.2514/6.2004-1503
  7. Jacob J., Lumpp J., Smith S., Smith W. Multidisciplinary Design Experience of a High Altitude Inflatable Wing UAV for Aerospace Workforce Development. 44th AIAA Aerospace Sciences Meeting and Exhibit (09-12 January 2006; Reno, Nevada). DOI: 10.2514/6.2006-93
  8. Clarke V., Kerem Jr.A., Lewis R. A Mars Airplane... Oh really? 17thAerospace Sciences Meeting (15-17 January 1979, New Orleans, LA, USA). DOI: 10.2514/6.1979-67
  9. Bar-Cohen Y., Colozza A.J., Badescu M. et al. Biomimetic Flying Swarm of Entomopters for Mars Extreme Terrain Science Investigations. Concepts and Approaches for Mars Exploration (12-14 June 2012; Houston, Texas).
  10. Colozza A. Planetary Exploration Using Biomimetics. An Entomopter for Flight on Mars. Phase II Final Report NAS5-98051, 2002.
  11. Dhanji N., Nahon M., Dupuis E. Method for Evaluating Various Aerial Platforms for Mars Applications. SpaceOps 2006 Conference (19-23 June 2006; Rome, Italy). DOI: 10.2514/6.2006-5554
  12. Aguirre J., Casado V., Chamie N., Zha, G.C. Mars Intelligent Reconnaissance Aerial and Ground Explorer (MIRAGE). 45th AIAA Aerospace Sciences Meeting and Exhibit (08-11 January 2007; Reno, Nevada). DOI: 10.2514/6.2007-244
  13. Justus C.G., Johnson D.L. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide. Technical Reports NASA/ TM-2001-210961.
  14. International Standard Atmosphere (ISA), https://en.wikipedia.org/wiki/International_Standard_ Atmosphere
  15. Anyoji M., Hamada D. High-performance airfoil with low Reynolds-number dependence on aerodynamic characteristics. Fluid Mechanics Research International Journal, 2019, vol. 3, no. 2, pp. 76-80. DOI: 10.15406/fmrij.2019.03.00055
  16. Colozza A. Preliminary design of a long-endurance Mars aircraft. 26th Joint Propulsion Conference (16-18 July 1990; Orlando, FL, USA). DOI: 10.2514/6.1990-2000
  17. Smith S., Hahn A., Johnson W. et al. The design of the Canyon Flyer, an airplane for Mars exploration. 38th Aerospace Sciences Meeting and Exhibit (10-13 January 2000; Reno, NV, USA). DOI: 10.2514/6.2000-514
  18. Euroavia students design Martian aerial vehicle, 2006, http://www.esa.int/Our_Activities/Human_ Spaceflight/Exploration/Euroavia_students_ design_Martian_aerial_vehicle/(print)
  19. NASA Mini-Sniffer, https://en.wikipedia.org/wiki/NASA_Mini-Sniffer
  20. Colozza A. Effect of power system technology and mission requirements on high altitude long endurance aircraft. Contractor Report NASA-CR-194455, 1994. URL: https://ntrs.nasa.gov/citations/19940020718
  21. Benito J., Noyes C., Shotwell R.F. et al. Hybrid propulsion Mars Ascent Vehicle concept flight performance analysis. 2017 IEEE Aerospace Conference (4-11 March 2017; Big Sky, MT, USA). DOI: 10.1109/AERO.2017.7943964
  22. Peeters B., Mulder J.A., Kraft S. et al. A flapping winged aerobot for autonomous flight in mars atmosphere. European Planetary Science Congress (21–26 September 2008; Munster, Germany). EPSC2008-A-00396.
  23. Bluman J.E., Kang C.-K., Landrum D.B. et al. Marsbee — Can a Bee Fly on Mars? 55thAIAA Aerospace Sciences Meeting (9-13 January 2017; Grapevine, Texas). DOI: 10.2514/6.2017-0328
  24. Malla R.B., Loo S.M., Liew L. et al. MAEV — Martian Airborne Exploration Vehicle. Wichita State University, Department of Aerospace Engineering. — HEDS-UP Forum May 2000, https://www.lpi.usra.edu/publications/reports/CB-1063/WichitaState.pdf
  25. Noth A., Bouabdallah S., Michaud S. et al. Sky-Sailor Design of an Autonomous Solar Powered Martian Airplane. Autonomous Systems Lab, Swiss Federal Institute of Technology, Lausanne EPFL, 2004. URL: http://www.sky-sailor.ethz.ch/docs/Sky-Sailor-ASTRA2004_Noth_(4.10.2004).pdf
  26. Elkin K. S., Kushchev V. N., Manko A. S., Mikhailov V.M. Mars entry calculation for descent module of ExoMars project. Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 79-86.
  27. Jenkinson L.R., Marchman J.F. Aircraft Design Projects For Engineering Students. American Institute of Aeronautics and Astronautics, 2003, 370 p.
  28. Hassanalian M., Rice D., Abdelkefi A. Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 2018, vol. 97, pp. 61–105. DOI: 10.1016/j.paerosci.2018.01.003
  29. Bernikov A.S., Bogachev V.A., Mikhailov D.N., Petrov Y.A., Sergeev D.V. The study of Martian dust impact on «ExoMars» spacecraft structures unfurling elements after touchdown. Aerospace MAI Journal, 2021, vol. 28, no 4, pp. 192-203. DOI: 10.34759/vst-2021-4-192-203
  30. Update on Opportunity Rover Recovery Efforts, 2018, https://www.nasa.gov/feature/update-on-opportunity-rover-recovery-efforts
  31. Song H., Underwood C. A Mars VTOL Aerobot — Preliminary Design, Dynamics and Control. 2007 IEEE Aerospace Conference (03-10 March 2007; Big Sky, MT, USA). DOI: 10.1109/aero.2007.352716
  32. Dhanji N.S., Dupuis E., Nahon M.A. Method for Evaluating Alternative Aerial Platforms for Mars Applications. AIAA 9th International Conference on Space Operation. 2006.
  33. Gudmundsson S. General Aviation Aircraft Design: Applied Methods and Procedures. New York, Butterworth-Heinemann, 2013, 1048 p.
  34. Liu T., Oyama A., Fujii K. Scaling Analysis of Propeller-Driven Aircraft for Mars Exploration. Journal of Aircraft, 2013, vol. 50, pp. 1593–1604. DOI: 10.2514/1.C032086
  35. Koning W.J.F., Romander E.A., Johnson W. Low Reynolds Number Airfoil Evaluation for the Mars Helicopter Rotor. NASA Report ARC-E-DAA-TN53889, 2018.
  36. Dе2sert T., Moschetta J., Bе2zard H. Aerodynamic Design of a Martian Micro Air Vehicle. 7thEuropean Conference for Aeronautics and Aerospace Sciences (2-6 July 2017; Milan, Italy). DOI: 10.13009/EUCASS2017-365
  37. Munday P.M., Taira K., Suwa T. et al. Nonlinear Lift on a Triangular Airfoil in Low-Reynolds-Number Compressible Flow. Journal of Aircraft, 2015, vol. 52, no. 3, pp. 924–931. DOI: 10.2514/1.C032983
  38. Shrestha R.L., Benedict M., Hrishikeshavan V., Chopra I. Hover Performance of a Small-Scale Helicopter Rotor for Flying on Mars. Journal of Aircraft, 2016, vol. 53, no. 4, pp. 1160–1167. DOI: 10.2514/1.C033621
  39. Dе2sert T., Moschetta J., Bе2zard H. Numerical and experimental investigation of an airfoil design for a Martian micro rotorcraft. International Journal of Micro Air Vehicles, 2018, vol. 10, no. 3, pp. 262–589. DOI: 10.1177/1756829318794171
  40. Anyoji M., Nose K., Ida S. et al. Low Reynolds Number Airfoil Testing in a Mars Wind Tunnel. 40th Fluid Dynamics Conference and Exhibit (28 June — 01 July 2010; Chicago, Illinois). DOI: 10.2514/6.2010-4627

mai.ru — informational site of MAI

Copyright © 1994-2023 by MAI