Durability evaluation of the inter-shaft bearing by the contact bearing stress

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-138-150

Аuthors

Semenova A. S.1*, Kuz’min M. V.1**, Leontiev M. K.2***

1. Lyulka Experimental Design Bureau, branch of the United Engine Corporation – Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: anna.semenova.lulka@gmail.com
**e-mail: maxim.kuzmin@okb.umpo.ru
***e-mail: lemk@alfatran.com

Abstract

The presented article deals with two approaches to the durability calculation of the inter-shaft roller bearing (IRRB), which was passing life tests with the bearing test bench at the Central Institute of Aviation Motors (CIAM).

The durability computing is being performed by the contact crushing stresses obtained by analytical and numerical methods.

Various trends in the works on creating techniques for bearings durability determining exist nowadays both computational-analytical and experimental. Life tests of bearings by the equivalent programs relate to the experimental ones.

Computational-analytical techniques, in their turn, are also being separated into the two trends, namely analytical ones with the equivalent loading computing with further durability evaluation, and techniques, employing numerical finite element models of the bearings supporting subassemblies for their stress-strain state computing.

As is known, the reliability of machines and mechanisms operation largely depends on the performance of their bearing subassemblies. This is of special importance for the aircraft products, as the bearing subassemblies of aircraft engines, gearboxes, aircraft units and assemblies are one of the most critical subassemblies, limiting, as a rule, their resources. The inter-shaft bearing is one of the most problematic engine components. When detecting defect symptoms of the inter-shaft bearing, the engine is being withdrawn from service, as this can lead to the rotors jamming and the entire engine failure. The main reason for the rolling bearings failure under normal operating conditions is the contact stresses originations and, as the result, wear-out of the rolling surfaces.

Most of the well-known analytical methods for bearing collapse stresses computing are based on the Hertz’s theory of static contact between two bodies. However, there is a number of simplifications for this theory:

  • no friction;
  • the contact area is small compared to the radii of curvature;
  • the materials of the contacting bodies are homogeneous, isotropic and absolutely elastic.

Numerical calculation allows solving contact problems without simplifying the Hertz theory:

  • simulation of friction;
  • accounting for the nonlinear properties of the material;
  • accounting for the roughness of the contacting surfaces by selecting the size of the finite element mesh.

A comparative assessment of the stresses in the contact of the rollers with the raceways of the bearing with opposite and unidirectional rotation of the rings is performed, with account for the above said factors.

Dynamic calculation of the IRRB as a part of experimental bench was performed in two options to determine the contact crushing stresses and, as a consequence, durability estimation. The presented article compares the result of the study obtained by the engineering technique are being compared with the results of numerical analysis. The elastoplastic computations were performed using the LS-DYNA code.

It is noted that the dynamic formulation of the problem, realized in a numerical approach, allows obtaining more accurate results on stresses and, hence, bearing life.

Keywords:

inter-shaft bearing, contact bearing stresses, rotating direction of the ring

References

  1. ISO 281:2007 Rolling bearings — Dynamic load ratings and rating life, 2007, 51 p.
  2. 2. ISO/TS 16281:2008. Rolling bearings — Methods for calculating the modified reference rating life for universally loaded bearings, 2008, 20 p. URL: https://www.iso.org/standard/40621.html
  3. Podshipniki kacheniya. Dinamicheskaya gruzopod«emnost’ i nominal’nyi resurs. GOST 18855-2013 (Rolling bearings. Dynamic load-carrying capacity and rating life, State Standard 18855-2013), Moscow, Standartinform, 57 p.
  4. Birger I.A., Shorr B.F., Iosilevich G.B. Raschet na prochnost’ detalei mashin. Spravochnik (Strength calculation of machine parts. Handbook), Moscow, Mashinostroenie, 1993, pp. 150-156.
  5. Petrov N.I., Nikolaev S.M. Novye tekhnologicheskie protsessy i nadezhnost’ GTD: nauchno-tekhnicheskii sbornik. Vypusk 9. Podshipniki i uplotneniya (New technological processes and reliability of gas turbine engine: scientific and technical collection. Issue 9. Bearings and seals), Moscow, TsIAM, 2013, 13-22 p.
  6. Semenova A.S., Kuz’min M.V. Strength of the Compact Sample from Elasto-Plastic Structured Material. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 180-190. DOI: 10.34759/vst-2022-3-180-190
  7. LS-DYNA Keyword User’s Manual (Version 971). Livermore Software Technology Corporation (LSTC), California, 2007, vol. 1, 1384 p.
  8. Morozov E.M., Nikishkov G.P. Metod konechnykh elementov v mekhanike razrusheniya (Finite element method in fracture mechanics), Moscow, URSS, 2008, 254 p.
  9. Perel’ L.Ya., Filatov A.A. Podshipniki kacheniya: Raschet, proektirovanie i obsluzhivanie opor. Spravochnik (Rolling bearings: Calculation, design and maintenance of supports. Handbook), Moscow, Mashinostroenie, 1992, 606 p.
  10. Podshipniki kacheniya. Polya dopuskov i tekhnicheskie trebovaniya k posadochnym poverkhnostyam valov i korpusov. Posadki. GOST 3325-85 (Rolling bearings. Tolerance margins and technical requirements for shaft and housing seatings. Fits, State Standard 3325-85), Moscow, Standarty, 1994, 105 p.
  11. Gilermo E. Razvitie razrushenii podshipnikov kacheniya vsledstvie kontaktnoi ustalosti pri kachenii. Evolution. Technical Journal SKF, 2015, https://evolution.skf.com
  12. Avgustovich V.G., Shmotin Yu.N., Sipatov A.M. et al. Chislennoe modelirovanie nestatsionarnykh yavlenii v gazoturbinnykh dvigatelyakh (Numerical simulation of unsteady phenomena in gas turbine engines), Moscow, Mashinostroenie, 2005, 523 p.
  13. Stepanov A.V. Modelirovanie zhestkosti sherokhovatykh poverkhnostei pri otsenke tochnosti tekhnologicheskogo oborudovaniya (Modeling rough surfaces stiffness in assessing technological equipment accuracy), Abstract of doctor’s thesis, Moscow, Moskovskii gosudarstvennyi tekhnologicheskii universitet, 1998, 15 p.
  14. Ivannikov V.V., Degtyarev S.A., Popov V.V. et al. Numerical Determination of Contact Forces in Radial Roller Bearings with Flexible Rings. Russian Aeronautics, 2018, vol. 61, no. 4, pp. 567–578. DOI: 10.3103/S1068799818040104
  15. Ivannikov V.V., Degtyarev S.A., Leont’ev M.K. Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Klimovskie chteniya — 2018. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya», St. Petersburg, Skifiya-print, 2018, pp. 168-177.
  16. Leontiev M., Ivannikov V., Degtyarev S. Radial roll bearings with flexible rings: application to rotor dynamics and extension to multibody simulation. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (16-21 December 2017; Maui, Hawaii).
  17. Ivannikov V.V., Degtyarev S.A., Popov V.V. et al. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2018, no. 4, pp. 58-68.
  18. Povrezhdeniya podshipnikov kacheniya i ikh prichiny (Rolling bearing damages and their causes), St. Petersburg, SKF, 2002, 47 p. URL: https://promshop.info/cataloguespdf/reasons_damage_ bearings.pdf
  19. Metodika raschetnoi otsenki dolgovechnosti podshipnikov kacheniya aviatsionnykh dvigatelei i ikh agregatov, trebovaniya k konstruktivnym parametram opor (Calculatory Estimation Technique for Durability of Rolling Bearings for Aircraft engines and Their Aggregates, Requirements to the Supports Structural Parameters), Moscow, TsIAM, 1996, 30 p.
  20. Korostashevskii R.V., Naryshkin V.N., Starostin V.F. et al. Podshipniki kacheniya. Spravochnik-katalog (Rolling bearings. Directory-Catalogue), Moscow, Mashinostroenie, 1984, 280 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI