Impurities in aviation fuel effect on the working process parameters and effectiveness indicators of gas turbine engines and power plants

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-186-195

Аuthors

Pelevin V. S.*, Aleksentsev A. A.**, Filinov E. P.***, Komisar Y. V.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: Pelevin_01@list.ru
**e-mail: artem2000samara@gmail.com
***e-mail: filinov@ssau.ru
****e-mail: komisar.yuv@ssau.ru

Abstract

The presented work studied the impact of impurities in aviation fuel on the parameters of the working process and efficiency indicators of gas turbine engines (GTE) and power plants. The authors performed the analysis of various environmentally sound impurities and revealed the expediency of converting gas turbine unit to more eco-friendly gas fuels.

Computations were being performed with the «ASTRA» computer-aided system for thermal-gas-dynamic computation and analysis of the power plant. The fuel being used and components ratio in the obtained mixture fed to the GTE combustion chamber was being changed with the integrated fuel block. The study was being conducted for the mixtures based on the TC-1 fuel and hydrogen. Possible combinations of fuel mixtures were modeled with no regard for the requirements to their storage and application.

The results of the study are presented in the form of dependences of the engine working cycle basic parameters on the changes in the impurities concentration in the fuel. It is found that that methane is the optimal choice as an impurity, since with effective power increase the specific consumption is significantly reduced. It was obtained that hydrogen significantly affects the parameters, but its application in its pure form is not profitable and practical.

As the final stage, the similar research was conducted for the hydrogen based mixtures. This computation allowed defining the fuel that reduces the hydrogen concentration in the mixture for its cost reduction, though it does not affect significantly the inflammable mixture cost and effectiveness degradation of the hydrogen fuel.

The presented study demonstrated that concentration increase of the gas fuel affects beneficially the efficiency and economy indicators of the aircraft power plant. The inflammable mixture composition in its turn does not practically affect the engine effective efficiency coefficient. The methane and TC-1 fuel mixture is the best composite aviation fuel by its indicators. The liquefied natural gas application may result in significant aircraft characteristics improving, though the rational solution would be process commencing of phase-in natural gases implementing, starting from the gaseous impurities addition to the standard fuel types.

Keywords:

hydrogen fuel, aviation kerosene, specific fuel consumption, the workflow efficiency increasing, impurities effect on the workflow of GTE

References

  1. Ryabov P.A., Kalenskii S.M. Concepts of perspective hybrid mid-flight engines on gas and cryogenic fuels for aircraft. Aerospace MAI Journal, 2015, vol. 22, no. 1, pp. 87-99.
  2. Ardeshiri S. The impact of physico-chemical properties of the jet fuel and biofuels on the characteristics of gas-turbine engines. Civil Aviation High Technologies, 2019, vol. 22, no 6, pp. 8-16. (In Russ.) DOI: 10.26467/2079-0619-2019-22-6-8-16
  3. Gulina S.A., Avdeev V.M., Vereshchagina I.V. et al. Vestnik Samarskogo Gosudarstvennogo Universiteta. Seriya: Tekhnicheskie nauki, 2016, no. 2(50), pp. 139-149.
  4. Kuz’michev V.S., Kulagin V.V., Krupenich I.N. et al. Trudy MAI, 2013, no. 67. URL: https://trudymai.ru/eng/published.php?ID=41518
  5. Tkachenko A.Yu., Krupenich I.N. Vestnik SGAU, 2012, vol. 34, no. 3-2, pp. 333-242.
  6. Kalugin K.S., Sukhov A.V. Methane application specifics as a fuel for liquid rocket engines. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 120-132.
  7. Nikolaikin N.I., Mel’nikov B.N., Bol’shunov Yu.A. Nauchnyi Vestnik MGTU GA, 2010, no. 162, pp. 12–21.
  8. Volkhonskii A.E., Rulin V.I., Yudin G.V., Krasovskaya S.V. Sciences of Europe, 2019, vol. 39,
    no. 1, pp. 49-56.
  9. Kulagin V.A., Grushevenko D.A. Will hydrogen be able to become the fuel of the future? Thermal Engineering, 2020, vol. 67, no. 4, pp. 189-201. DOI: 10.1134/S0040363620040025
  10. Isachenkov E.I., Stepanov A.V. A method for hydrogen and other gas mediums tankage. Aerospace MAI Journal, 2002, vol. 9, no. 2, pp. 34-37.
  11. Vakulin A.Yu., Gras’ko T.V. Vestnik UGATU, 2020, vol. 24, no. 3, pp. 45–51.
  12. Gryadunov K.I., Kozlov A.N., Samoilenko V.M., Ardeshiri Sh. Nauchnyi Vestnik MGTU GA, 2019,
    vol. 22, no. 5, pp. 67–75.
  13. Demskaya I.A., Raznoschikov V.V. Technique for determination new structures of the alternative fuels. Aerospace MAI Journal, 2012, vol. 19, no. 5, pp. 72-80.
  14. Sargsyan D.R. Nauchnyi vestnik MGTU GA, 2011, no. 174, pp. 67–75.
  15. Baklanov A.V. Pressure losses in combustion chamber fuel system of the natural gas running gas turbine engine. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 157-168. DOI: 10.34759/vst-2020-2-157-168
  16. Sultanov M.M., Kuryanova E.V. Research of the application of hydrogen as a fuel to improve energy and environmental performance of gas turbine plants. Power engineering: research, equipment, technology. 2021, vol. 23, no. 2, pp. 46-55. DOI: 10.30724/1998-9903-2021-23-2-46-55
  17. Ratner S.V. Innovation in the aircraft industry: An analysis of results of research programs for developing alternative types of aviation fuel. National Interests: Priorities and Security. 2018, vol. 14, no. 3, pp. 492–506. DOI: 10.24891/ni.14.3.492
  18. Marin G.E., Osipov B.M., Akhmetshin A.R., Savina M.V. Adding hydrogen to fuel gas to improve energy performance of gas-turbine plants. iPolytech Journal, 2021; vol. 25, no. 3, pp. 342-355. (In Russ.) DOI: 10.21285/1814-3520-2021-3-342-355
  19. Shakhuov T.A., Kunikeev B.A. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoi i ekonomicheskoi informatsii, 2018, no. 5(1421), pp. 87-95.
  20. Popov G.M., Krivtsov A.V., Kolmakova D.A. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, no. 5, pp. 184-190.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI