Development and study of the oxygen-fuel high pressure combustion chamber

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-196-207

Аuthors

Komarov I. I.1*, Rogalev A. N.2**, Kharlamova D. M.1***, Nesterov P. M.1****, Sokolov V. P.1*****

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. “Power machines – ZTL, LMZ, Electrosila, Energomachexport” (“Power machines”), 3A, Vatutina str., St. Petersburg, 195009, Russia

*e-mail: KomarovII@mpei.ru
**e-mail: r-andrey2007@yandex.ru
***e-mail: RostovaDM@mpei.ru
****e-mail: NesterovPM@mpei.ru
*****e-mail: vl.sokolov2013@mail.ru

Abstract

The object of the present study is a combustion chamber for oxy-fuel power generation technology, in which carbon dioxide at supercritical pressure is employed as the working body and oxygen is the oxidizer. The article presents the results of the combustion chamber designing of a gas turbine power plant, obtained with the techniques and scientific-and-technical solutions applied while combustion chambers for the aircraft engines creation. The techniques selection is stipulated by the following criteria: oxygen application as an oxidizer, high values of the flame tube thermal factor, reaching temperatures above 2500°C in the combustion zone, which brings the oxy-fuel combustion chamber of the power plant closer to the combustion chambers of aircraft gas turbine engines. A cannular combustion chamber with slot-type cooling of the flame tube was selected as a prototype.

Recommendations on the combustion chambers designing for carbon dioxide power plants, accounting for difference of the employed oxidizer, cooler and components of ballast, were proposed based on the studies being conducted. The dependencies of the flame normal propagation velocity value and adiabatic combustion temperature were determined with the Chemkin-Pro software complex for the combustion chamber being developed. Computational results allowed determining the carbon dioxide fluxes distribution along the flame tube length. According to the criterion of normal flame propagation velocity and adiabatic combustion temperature the value of CO2 mass content in the combustion zone was selected as 0.6, which corresponds to supplying 12% of the total CO2 consumption in the combustion chamber into combustion zone.

After substantiated carbon dioxide flows distribution in the combustion chamber, a constructive profile of the combustion chamber system, including a slot-type cooling, was obtained employing one-dimensional computations.

Numerical modeling of combustion and hydrodynamics processes was performed with the Ansys Fluent software package, which proved itself well for the design. The velocity vectors fields and temperature distribution plots along the wall of the flame tube of the combustion chamber were obtained. The authors revealed that the vortex did not form while the flame tube diffuser flow-around by the flow, and, as a consequence, the cooling section was locking did not occur. The cooling film steadily grows from section to section along the axis of the flame tube at the obtained design characteristics of the cooling system. The authors determined that the mass flow rates of carbon dioxide flows for cooling and mixing should differ by no more than 10% to maintain a stable film along the entire flame tube.

Keywords:

supercritical carbon dioxide, film cooling, temperature pattern, kinetic mechanism, chemical re-action inhibitor

References

  1. Adu E., Zhang Y.D., Liu D., Tontiwachwuthikul P. Parametric process design and economic analysis of post-combustion CO2capture and compression for coal- and natural gas-fired power plants. Energies, 2020, vol. 13, no. 10: 2519. DOI: 10.3390/en13102519
  2. Andryushin A., Shcherbatov I., Dolbikova N., Kuznetsova A., Tsurikov G. Outlier detection in predictive analytics for energy equipment. In book: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control. Springer, Cham, 2020, vol. 259, pp. 193-203. DOI: 10.1007/978-3-030-32579-4_15
  3. EDGAR — Emissions Database for Global Atmospheric Research. Report. Publications Office of the European Union, 2019. URL: https://edgar.jrc.ec.europa.eu/
  4. Shcherbatov I., Agibalov V., Dolgsuhev A., Belov M. Subsystem for building a digital twin of the main and auxiliary equipment of thermal scheme of thermal power plant. In book: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M. (eds) Society 5.0: Human-Centered Society Challenges and Solutions. Studies in Systems, Decision and Control, Springer, Cham, 2022, vol. 416, pp. 239-249. DOI: 10.1007/978-3-030-95112-2_20
  5. Jo H., Kang K., Park J. et al. Optimization of air distribution to reduce NOx emission and unburned carbon for the retrofit of a 500 MWe tangential-firing coal boiler. Energies, 2019, vol. 12, no. 17: 3281. DOI: 10.3390/en12173281
  6. Kindra V., Rogalev A., Lisin E. et al. Techno-economic analysis of the oxy-fuel combustion power cycles with near-zero emissions. Energies, 2021, vol. 14, no. 17: 5358. DOI: 10.3390/en14175358
  7. Allam R., Martin S., Forrest B. et al. Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Procedia, 2017, vol. 114, pp. 5948–5966. DOI: 10.1016/j.egypro.2017.03.1731
  8. Rogalev A., Rogalev N., Kindra V. et al. Research and Development of the Oxy-Fuel Combustion Power Cycles with CO2Recirculation. Energies, 2021, vol. 14, no. 10: 2927. DOI: 10.3390/en14102927
  9. Allam R.J., Fetvedt J.E., Forrest B.A., Freed D. The oxy-fuel, supercritical CO2Allam Cycle: New cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition (16–20 June 2014; Dьsseldorf, Germany). Vol. 3B. Paper No: GT2014-26952. DOI: 10.1115/GT2014-26952
  10. Orlov M.Yu., Lukachev S.V., Matveev S.G. Modelirovanie protsessov v kamere sgoraniya (Modeling processes in the combustion chamber), Samara, Samarskii universitet, 2017, 291 p.
  11. Mikhailov A.I., Gorbunov G.M., Borisov V.V. et al. Rabochii protsess i raschet kamer sgoraniya gazoturbinnykh dvigatelei (Workflow and calculation of gas turbine engines combustion chambers), Moscow, Oborongiz, 1959, 285 p.
  12. Delimont J., Andrews N., Chordia L. Computational Modeling of a 1MW Scale Combustor for a Direct Fired sCO2Power Cycle. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition (11-15 June 2018; Oslo, Norway). Vol. 9 «Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy». Paper No. GT2018-77087. DOI: 10.1115/GT2018-77087
  13. Komarov I., Kharlamova D., Vegera A., Makhmutov B. Principal Design of Methane-oxygen Combustion chamber with Supercritical CO2. ARPN Journal of Engineering and Applied Sciences, 2021, vol. 16, no. 6, pp. 673–678. URL: https://arpnjournals.org/jeas/research_papers/rp_2021/jeas_0321_8537.pdf
  14. Kharitonov V.F. Proektirovanie kamer sgoraniya (Design of combustion chambers), Ufa, UGATU, 2008, 138 p.
  15. Koroglu B., Pryor O.M., Lopez J. et al. Shock tube ignition delay times and methane time-histories measurements during excess CO2diluted oxy-methane combustion. Combustion and flame, 2016, vol. 164,
    no. 2, pp. 152-163. DOI: 10.1016/j.combustflame. 2015.11.011
  16. Polezhaev Yu.V., Mostinskii I.L. Normal flame propagation speed and analysis of the influence of system parameters on it. Thermophysics of high temperatures, 2005, vol. 43, no. 6, pp. 933–942.
  17. Heil P., Toporov D., Fцrster M., Kneer R. Experimental investigation on the effect of O2and CO2 on burning rates during oxyfuel combustion of methane. Proceedings of the Combustion Institute, 2011, vol. 33, no. 2, pp. 3407-3413. DOI: 10.1016/j.proci.2010.05.047
  18. Baklanov A.V. Experimental study of the flame tube temperature state of a gas turbine engine multi-nozzle combustion chamber. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 116-125.
  19. Toktaliev P.D., Martynenko S.I., Yanovskii L.S., Volokhov V.M. XL Akademicheskie chteniya po kosmonavtike: sbornik tezisov konferentsii (26–29 January 2016; Moscow), Moscow, MGTU im. N.E. Baumana, 2015, pp. 334.
  20. Toktaliev P.D., Martynenko S.I. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. NE Baumana. Seriya «Estestvennye nauki», 2015. no. 1(58), pp. 84-98.
  21. Lilley D.G. Swirl flows in combustion: a review. AIAA Journal, 1977, vol. 15, no. 8, pp. 1063–1078. DOI: 10.2514/3.60756
  22. Yilmaz H., Cam O., Yilmaz I. Swirler geometry effects (dh/do ratio) on synthetic gas flames. Part 1: Combustion and emission characteristics. Energetika, 2021, vol. 67, no. 1–2. DOI: 10.6001/energetika. v67i1.4535
  23. Marchukov E.Y., Vovk M.Y., Kulalaev V.V. Technical appearance analysis of energy systems by mathematical statistics techniques. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 156-165. DOI: 10.34759/vst-2019-4-156-165
  24. Rekin A.D., Sekundov A.N., Yakubovskii K.Ya. Specific Features Pertinent to the Numerical Simulation of a Convective Impingement Cooling System for a Combustion Chamber. Thermal engineering, 2005, vol. 52, no. 11, pp. 833-837.
  25. Bratukhin A.G. Aviatsionno-kosmicheskoe mashinostroenie. Mezhdunarodnaya entsiklopediya CALS-tekhnologii (Aerospace engineering: International Encyclopedia of CALS Technologies), Moscow, Nauchno-issledovatel’skii tsentr avtomatizirovannykh sistem konstruirovaniya, 2015, 608 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI