Gas turbine engines conceptual design approach based on multilevel model

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2022-4-219-230

Аuthors

Ostapyuk Y. A.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: oya92@mail.ru

Abstract

One of the critical tasks in aviation gas turbine engine (GTE) creating consists in its design process efficiency increasing, which lies in the design period reduction while the project high quality and competitiveness ensuring.

The article considers conceptual design stage, which includes external design of the engine in the aircraft system, layout forming of the gas turbine engine workflow and its structural and geometry layout. This stage is being characterized by the substantial uncertainty level, which source might lie in the initial data incompleteness or generalization.

The initial data uncertainty impact on the engine parameters basic figures in the aggregate with tightening these figures permissible deviations from the project requires maximum possible transition from the initial design data values, predicted by based on the statistics, to the computed ones while successive solution of the project tasks. Mathematical models application of various complexity levels and dimensionality allows reducing the level of the initial data uncertainty as the project development forward and thereby cutting the terms of searching for the effective design solutions.

The need for employing system analysis, multidimensional optimization, the object modeling hierarchy principle and CALS-technology led to the idea of multilevel modeling. The GTE multilevel model represents the set of all engine elements and systems, employed at the various stages of the life cycle.

Accounting for the requirements for both multilevel model and design process allowed determining the most rational structures of the model being applied for the standard set of the design tasks. Conceptual design approach to the gas turbine engines designing with the multilevel model was elaborated on this basis.

The said approach application allows cutting the terms of computations due to the initial data uncertainty level reducing and the iterations number cutting between computations since the assembly units are being optimized in the engine system.

Keywords:

gas turbine engine, conceptual design, thermo-gas-dynamic designing, multilevel model, zero-dimensional model, one-dimensional model, design approach, design algorithm

References

  1. Val’kman Yu.R., Tarasov V.B. Ontologiya proektirovaniya, 2018, vol. 8, no. 1(27), pp. 8-34. DOI: 10.18287/2223-9537-2018-8-1-8-34
  2. Marchukov E.Yu., Egorov I.N. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Problemy i perspektivy razvitiya dvigatelestroeniya» (22-24 June 2016; Samara), Samara, Samarskii Universitet, 2016. Part 2, pp. 233-236.
  3. Avgustinovich V.G. Matematicheskoe modelirovanie aviatsionnykh dvigatelei (Mathematical modeling of aircraft engines), Perm, PGTU, 2008, 100 p.
  4. Skibina V.A., Solonina V.I. (eds) Nauchnyi vklad v sozdanie aviatsionnykh dvigatelei. V 2 kn. (Scientific contribution to the creation of aircraft engines), Moscow, Mashinostroenie, 2000. Book 1, 725 p.
  5. Krivosheev I.A., Ivanova O.N. Vestnik UGATU, 2007, vol. 9, no. 1(19), pp. 10-21.
  6. Sehra A.K., Whitlow W. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences, 2004, vol. 40, no. 4-5, pp. 199-235. DOI: 10.1016/j.paerosci.2004.06.003
  7. Krivtsov A.V., Shablii L.S. Trudy MAI, 2014, no. 74. URL: https://trudymai.ru/eng/published.php?ID =49291
  8. Pachidis V., Pilidis P., Talhouarn F. et al. A fully integrated approach to component zooming using computational fluid dynamics. ASME Turbo Expo 2005: Power for Land, Sea and Air (6–9 June 2005; Reno, Nevada, USA). Vol. 5, pp. 191-199. DOI: 10.1115/GT2005-68458
  9. Agul’nik A.B., Gnesin E.M., Kartovitskii L.L., Mozzhorina T.Yu. Matematicheskoe modelirovanie gazoturbinnykh dvigatelei (odnomernye modeli) (Mathematical modeling of gas turbine engines (one-dimensional models)), Moscow, MAI, 2013, 104 p.
  10. Makarov V.E., Andreev S.P., Berseneva N.V. et al. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Aviadvigateli XXI veka» (24-27 November 2015; TsIAM, Moskva), Moscow, TsIAM, 2015,
    pp. 83-85.
  11. Follen G., auBuchon M. Numerical zooming between a NPSS engine system simulation and a one-dimensional high compressor analysis code. NASA/TM-2000-209913, 2000.
  12. Pilet J., Lecordix J.-L., Garcia-Rosa N. et al. Towards a fully coupled component zooming approach in engine performance simulation. ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
    (6–10 June 2011; Vancouver, British Columbia, Canada).
    Vol. 1, pp. 287-299. DOI: 10.1115/GT2011-46320
  13. Staroverov N. Obzor Dynardo optiSLang. In: ANSYS Advantage, 2014, no. 20, pp. 11-17. URL: www.ansysadvantage.ru/fileadmin/archive/20/ANSYS-DVANTAGE-Rus-20-03.pdf
  14. CAE-based robust design optimization — optiSLang. URL: https://www.dynardo.de/en/software/optislang.html
  15. IOSO: features of the technology. URL: http://www.iosotech.com/ru/optim1.htm
  16. Shishaeva A., Moskalev I., Zhluktov S. et al. SAPR i grafika, 2010, no. 9(167), pp. 97-101.
  17. Egorov I.N., Kretinin G.V., Leshchenko I.A., Kuptzov S.V. The main features of IOSO technology usage for multi-objective design optimization. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (30 August 2004 — 01 September 2004; Albany, New York), 2004, pp. 3437-3447. DOI: 10.2514/6.2004-4610
  18. SimManager: vysshii uroven’ organizatsii inzhenernykh rabot na predpriyatii. URL: http://www.mscsoftware.ru/products/simmanager
  19. Teamcenter. URL: https://www.plm.automation. siemens.com/global/ru/products/teamcenter/
  20. Teamcenter 10. Obshchie svedeniya. URL: https://www.cad-is.ru/blog_post/key-features-of-teamcenter
  21. Oleinik D.S., Ogloblin D.I. Internet-zhurnal «Naukovedenie», 2016, vol. 8, no. 3(34). URL: http:
    //naukovedenie.ru/PDF/139TVN316.pdf
  22. AxSTREAM Software Platform. URL: http://www. softinway.com/software
  23. Maslov V.G., Kuz’michev V.S., Kovartsev A.N., Grigor’ev V.A. Teoriya i metody nachal’nykh etapov proektirovaniya aviatsionnykh GTD (Theory and methods of the initial stages of designing aviation GTE), Samara, SGAU, 1996, 147 p.
  24. Kuz’michev V.S., Tkachenko A.Yu., Ostapyuk Ya.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 4, pp. 91-101. DOI: 10.18287/2541-7533-2016-15-4-91-101
  25. Baklanov A.V. Multilevel modelling application in the gas turbine engine low-emission combustion chamber design process. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 159-172. DOI: 10.34759/vst-2020-4-159-172
  26. Koval’ S.N., Badernikov A.V., Shmotin Y.N., Pyatunin K.R. Digital twin technology application while gas turbine engines development. Aerospace MAI Journal, 2021, vol. 28, no. 3, pp. 139-145. DOI: 10.34759/vst-2021-3-139-145

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI