Temperature-force conditions diagnosing of the aircraft engine parts blade machining by the tools with multilayer coatings

Machine-building Engineering and Machine Science

DOI: 10.34759/vst-2022-4-231-242


Grigor’ev S. N.*, Volosova M. A.**, Migranov M. S.***, Fedorov S. V.****, Gusev A. S.*****, Kolosova N. V.******

Moscow State University of Technology "STANKIN", 1, Vadkovsky lane, Moscow, 127994, Russia

*e-mail: s.grigoriev@stankin.ru
**e-mail: volosova1978@gmail.com
***e-mail: migmars@mail.ru
****e-mail: sv.fedorov@icloud.com
*****e-mail: gusev.angrey@bk.ru
******e-mail: t_tnatikt_t@mail.ru


Development of modern machine-building production urgently requires solving the problems of predictability and reliability ensuring of the technological process of hard-to-cut steels and alloys blade cutting by cutting tools with innovative coatings based on studying the effect of the cutting process main modes on the temperature and force conditions and wear resistance; bringing to light the effective and informative parameters for control and diagnostics with subsequent development and introduction of adaptive control systems. Primary attention is payed in the article to the issues of cutting processing diagnosing by emplloying basic physical and chemical phenomena manifested in the process, i.e. the cutting temperature by thermo-EMF measuring; the cutting force components by determining the electrical conductivity of the «tool-part» contact, etc. To study the wear patterns of cutting tools with multilayer composite coatings during turning, characteristic representatives of three various groups of structural materials widely applied in aircraft engine structure, with significantly differing physical and mechanical properties, chemical composition and, as a consequence, different machinability by cutting were selected. They are 15X18N12X4TYU heat-proof, heat-resistant and acid-resistant austenitic steel of the IV group of machinability by cutting; HN73MBTU heat-resistant, deformable nickel-based alloy of the V group of machinability by cutting; VT18U titanium alloy of the VII group of machinability by cutting. Experimental tests were performed on the I6K20F3NC lathes with normal hardness, and 16K20 universal lathe, equipped with thyristor converter for stepless spindle speed regulation. Turning was carry through with carbide inserts of VK10 OM and T15K6 grades with different composition, thickness and architecture of composite wear-resistant single-component coatings, multi-component composite coatings based on double compound nitride systems, as well as triple compound nitrides (TiAlCr)N, (AlTiCr)N, (AlCrTi)N, (Ti,Al,V)N, (Ti,Zr,C)N). The coatings were obtained with both domestic and foreign Platit 311 and Platit 411 installations. The results of the contact processes experimental research, such as temperature and cutting forces, cutting tool wear-out etc., revealed that cutting process can be effectively diagnosed and reliability of the cutting tool with wear-resistant coating can be effectively predicted by the values of thermo-EMF and electric conductivity of the «tool-part» contact.


composite multicomponent wear-resistant coatings, double and triple nitrides, temperature-force cutting conditions, thermo-EMF, mercury current collector, “tool-part” contact electrical conductivity, cutting force components, cutting tool wear resistance


  1. Zoriktuev V.Ts., Khuzin I.S. Elektroprovodimost’ kontakta «instrument-detal’» — fizicheskii i informatsionnyi parametr v stanochnykh sistemakh (Electrical conductivity of the «tool-part» contact is a physical and informational parameter in machine systems), Moscow, Mashinostroenie, 1998, 174 p.
  2. Loladze T.N. Prochnost’ i iznosostoikost’ rezhushchego instrumenta (Strength and wear resistance of the cutting tool), Moscow, Mashinostroenie, 1982, 320 p.
  3. Barzov A.A. Tekhnologicheskaya diagnostika v informatsionnom obespechenii SAPR instrumenta (Technological diagnostics in the information support of CAD tools), Moscow, Mashinostroenie, 1991,
    48 p.
  4. Kuzin V.V., Grigoriev S.N., Fedorov M.Y. Role of the thermal factor in the wear mechanism of ceramic tools. Part 2: Microlevel. Journal of Friction and Wear, 2015, vol. 36, no 1, pp. 40-44. DOI: 10.3103/S1068366615010079
  5. Grigoriev S.N., Gurin V.D., Volosova M.A., Cherkasova N.Y. Development of residual cutting tool life prediction algorithm by processing on CNC machine tool. Materialwissenschaft und Werkstofftechnik, 2013, vol. 44, no 9, pp. 790-796. DOI: 10.1002/mawe.201300068
  6. Grigoriev S.N., Vereschaka A.A., Fyodorov S.V. et al. Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. The International Journal of Advanced Manufacturing Technology, 2017, vol. 90, no. 9-12, pp. 3421-3435. DOI: 10.1007/s00170-016-9676-z
  7. Kuzin V.V., Grigoriev S.N., Volosova M.A. Effect of a tic coating on the stress-strain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions. Refractories and Industrial Ceramics, 2014, vol. 54, no. 5, pp. 376-380. DOI: 10.1007/s11148-014-9614-2
  8. Huang W., Li Y., Wu X., Shen J. The wear detection of millgrinding tool based on acoustic emission sensor. The International Journal of Advanced Manufacturing Technology, 2022. DOI: 10.1007/s00170-022-09058-7
  9. Gupta M.K., Korkmaz M.E., Sarikaya M. et al. In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mechanical Systems and Signal Processing, 2022, vol. 169. DOI: 10.1016/j.ymssp.2021.108772
  10. Fu Y., Downey A.R.J., Yuan L. et al. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. Journal of Manufacturing Processes, 2022, vol. 75, pp. 693-710. DOI: 0.1016/j.jmapro.2021.12.061
  11. Fedorov S.V., Kozochkin M.P., Stebulyanin M.M. Сontrol of the surface electron-beam alloying process by vibration monitoring. Mechanics and Industry, 2018, vol. 19, no. 7: 702. DOI: 10.1051/meca/2018050
  12. Mian T., Choudhary A., Fatima S. Multi-Sensor Fault Diagnosis for Misalignment and Unbalance Detection Using Machine Learning. IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (02-05 January 2022; Trivandrum, India). DOI: 10.1109/PESGRE52268.2022.9715938
  13. Qiu Ch., Li K., Li B. et al. Semi-supervised graph convolutional network to predict position-and speed-dependent tool tip dynamics with limited labeled data. Mechanical Systems and Signal Processing, 2022,
    vol. 164. DOI: 10.1016/j.ymssp.2021.108225
  14. Datta A., Dutta S., Pal S.K., Sen R. Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method. Journal of Materials Processing Technology, 2013, vol. 213,
    no. 12, pp. 2339-2349. DOI: 10.1016/j.jmatprotec. 2013.07.008
  15. Liu Y., Guo L., Gao H. et al. Machine vision based condition monitoring and fault diagnosis of machine tools using information from machined surface texture: A review. Mechanical Systems and Signal Processing, 2022, vol. 164. DOI: 10.1016/j.ymssp.2021.108068
  16. Martinova L.I., Grigor’ev A.S., Sokolov S.V. Avtomatizatsiya v promyshlennosti, 2010, no. 5, pp. 46-50.
  17. Ponomarev A.I., Ignat’ev A.A. Inzhenernyi vestnik Dona, 2022, no. 4. URL: http://www.ivdon.ru/ru/magazine/archive/n4y2022/7598
  18. Sidorov A.S. Monitoring i prognozirovanie iznosa rezhushchego instrumenta v mekhatronnykh stanochnykh sistemakh (Monitoring and forecasting of cutting tool wear in mechatronic machine systems). Abstract of doctor’s thesis, Ufa, UGATU, 2007, 17 p.
  19. Suhova N.A., Shekhtman S.R., Migranov M.Sр. Synthesis of nanostructured composite coatings in arc discharge plasma. 4th International Conference on Industrial Engineering, 2019, pp. 1393-1399. DOI: 10.1007/978-3-319-95630-5_147
  20. Migranov M.S., Shekhtman S.R., Sukhova N.A., Gusev A.S. Wear-Resistant Complexes of Instrumental Purpose for Operation under Increased Thermal-Power Loading. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 211-219. DOI: 10.34759/vst-2022-3-211-219
  21. Рetrova L.G., Belashova I.S., Alexandrov V.A., Demin P.E., Brezhnev A.A. The possibility of obtaining of nano-modified layers and coatings on steel products by surface engineering methods. Aerospace MAI Journal, 2014, vol. 21, no. 2, pp. 75-82.

mai.ru — informational site of MAI

Copyright © 1994-2023 by MAI