Numerical studies of gliding angle impact on interference of propeller and extra-high aspect ratio wing

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-23-35

Аuthors

Pavlenko O. V.1*, Pigusov E. A.1**, Santhosh A. 2***, Reslan M. G.2****

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Moscow Institute of Physics and Technology (National Research University), 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

*e-mail: olga.v.pavlenko@yandex.ru
**e-mail: evgeniy.pigusov@tsagi.ru
***e-mail: aishwaryavitha5@mail.com
****e-mail: reslan.mostafa97@gmail.com

Abstract

Evaluation of the aerodynamic loads distribution along the wingspan for the aircraft with an extra-high aspect ratio wing is an up-to-date task, and in the future, it will allow developing measures for the negative impact reduction of wing deformations while the flights in a turbulent atmosphere. Another problem for the said aerodynamic layouts with the extra-high aspect ratio wing is the flight at a crosswind, which may lead, among other things, to the «Dutch step» phenomenon occurrence. The presented article considered the crosswind impact on the load distribution along the wing, including running pulling propellers. The aerodynamic loading distribution along the takeoff and landing mechanization elements and control organs on the wing was obtained.

Numerical studies of the side slip angle (crosswind) effect on the aero-dynamic characteristics of the aircraft model with an extra-high aspect ratio wing with propellers running at the wing ends were performed with a program based on the Reynolds-averaged Navier—Stokes equations solving. The computations were conducted with incoming flow velocity of V = 50 m/s and Reynolds number of Re = 0.35 × 10at non-deflected wing mechanization of d = 0 to compare the computational and experiment results within the range of side slip angles b from 0 to 20°, as well as in takeoff position with d = 15°. The article shows that with the side wind the flow bevels increase and local angle of attack on the wing changes. Computational studies revealed the interference of the running engines at the side wind has a significant impact on the aircraft model flow-around, its aerodynamic characteristics and hinge moments of the wing mechanization. The lift coefficient dis-tribution along the wingspan shows that the lift force reduction at the slide angle increase is being strongly affected only by the left wing console, while at the windward right console of the wing the lifting force drop at the slide angle increase is just local in the area of the propeller slipstreams blow-around. The slide angle change increases, in general, the hinge moment of the external aileron only at the right windward wing console especially with the propeller blowing. This is being stipulated by the fact that the slide angle affects the flow bevels in the propeller blow-around area, and only the windward console gets into it. The article shows that at the blow-around of the undeflected mechanization and the slide angle increase the flow bevels of the external aileron are large enough, while with deflected wing mechanization the they decrease, and the pressure on the lower part of the wing increases.

Computational studies revealed that the interference of running propellers in a crosswind significantly affects the aircraft model flow-around and its aerodynamic characteristics. With a crosswind, the flow bevels are increasing, and the local angle of attack on the wing is changing. With the side slip angle increasing this effect strengthens on the windward side, and the interference zone with the propeller spreads along the span of the windward side of the wing, where the hinge moments of the wing mechanization increase hereupon even in the retracted position.


Keywords:

pulling propeller, hinge moments, wing mechanization, extra-high aspect ratio wing, side slip angle

References

  1. Ma Z., Zhu X., Zhou Z. et al. A Lateral-Directional Control Method for High Aspect Ratio Full-Wing UAV and Flight Tests. Applied Sciences, 2019, vol. 9, no. 20: 4236. DOI: 10.3390/app9204236
  2. Liseitsev N.K., Samoilovskii A.A. Trudy MAI, 2012, no. 55. URL: https://trudymai.ru/eng/published.php?ID = 30018
  3. Marcus E.A.P., de Vries R., Kulkarni A.R., Veldhuis L.L.M. Aerodynamic Investigation of an Over-the-Wing Propeller for Distributed Propulsion. 2018 AIAA Aerospace Science Meeting (8–12 Janu-ary 2018; Kissimmee, Florida). DOI: nv c 10.2514/6.2018-2053
  4. Teixeira P.C., Cesnik C.E.S. Inclusion of propeller effects on aeroelastic behavior of very flexible aircraft. International Forum on Aeroelasticity and Structural Dynamics (25–28 June 2017; Como, Italy). IFASD-2017-194.
  5. Van Arnhem N., Sinnige T., Stokkermans T.C., Eitelberg G., Veldhuis L.L. Aerodynamic Interaction Effects of Tip-Mounted Propellers Installed on the Horizontal Tailplane. AIAA Aerospace Sciences Meeting (08–12 January 2018; Kissimmee, Florida). DOI: 10.2514/6.2018-2052
  6. Kim H.D., Perry A.T., Ansell P.J. A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology. AIAA/IEEE Electric Aircraft Technologies Symposium (9–11 July 2018; Cincinnati, Ohio). DOI: 10.2514/6.2018-4998
  7. Stoll A.M., Mikic G.V. Design Studies of Thin-Haul Commuter Aircraft with Distributed Electric Propulsion. 16th AIAA Aviation Technology, Integration, and Operations Conference (13–17 June 2016; Washington, D.C.). DOI: 10.2514/6.2016-3765
  8. Stoll A.M., Bevirt J.B., Moore M.D. et al. Drag Reduction Through Distributed Electric Propulsion. 14th AIAA Aviation Technology, Integration, and Operations Conference (16–20 June 2014; Atlan-ta, GA). DOI: 10.2514/6.2014-2851
  9. Tytsyk Yu.A., Shpilevskii V.L. Patent RU 2686350 S1, 25.04.2019.
  10. Andreev G.T., Ershov A.A., Pavlenko O.V. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 5, pp. 227–231.
  11. Andreev G.T., Glushchenko G.N., Kutukhina N.V., Pavlenko O.V. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2013, no. 6, pp. 18–25.
  12. Shilova M.S. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID = 29096
  13. Platonov D.V., Minakov A.V., Dekterev A.A., Kharlamov E.B. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 1(21), pp. 84–94.
  14. Lutz T., Gansel P., Godard J.-L., Gorbushin A. et al. Going for Experimental and Numerical Unsteady Wake Analyses Combined with Wall Interference Assessment by Using the NASA CRM-model in ETW. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (07–10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas). DOI: 10.2514/6.2013-871
  15. Xu H., Huang Q., Han J., Yun H. Calculation of Hinge Moments for a Folding Wing Aircraft Based on High-Order Panel Method. Mathematical Problems in Engineering, 2020. DOI: 10.1155/2020/8881233
  16. Stoll A.M. Comparison of CFD and Experimental Results of the LEAPTech Distributed Electric Propulsion Blown Wing. 15th AIAA Aviation Technology, Integration, and Operations Conference (22–26 June 2015; Dallas, Texas). DOI: 10.2514/6.2015-3188
  17. Samoilovskii A.A., Liseitsev N.K. Methodology of design parameters characterization of solar-powered unmanned aerial vehicles. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 7–16.
  18. Pavlenko O.V., Chuban’ A.V. Uchenye zapiski TsAGI, 2018, vol. XLIX, no. 7, pp. 85–92.
  19. Vinogradov O.N., Kornushenko A.V., Pavlenko O.V., Petrov A.V., Pigusov E.A., Trinh T.N. Specifics of propeller and su-per-high aspect ratio wing interference in non-uniform flow. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 7–19. DOI: 10.34759/vst-2021-2-7-19
  20. Vinogradov O.N., Kornushenko A.V., Pavlenko O. V. et al. Influence of propeller diameter mounted at wingtip of high aspect ratio wing on aerodynamic performance. Journal of Physics: Conference Se-ries. Vol. 1959, The International Scientific Conference on Mechanics «The Ninth Polyakhov’s Reading» (09-12 March 2021; Saint Petersburg, Russian Federation). DOI: 10.1088/1742-6596/1959/1/012051
  21. Vozhdaev V.V., Teperin L.L., Chernyshev S.L. Trudy TsAGI, 2014, no. 2740, pp. 37–43.
  22. Alesin V.S., Gubskii V.V., Druzhinin O.V. et al. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 2, pp. 91–96.
  23. Kornushenko A.V., Kudryavtsev O.V., Teperin L.L. et al. Uchenye zapiski TsAGI, 2016, vol. 47, no. 8, pp. 42–49.
  24. Kornushenko A.V., Kudryavtsev O.V., Teperin L.L. et al. Uchenye zapiski TsAGI, 2017, vol. 48, no. 1, pp. 3–9.
  25. Pavlenko O.V., Petrov A.V., Pigusov E.A. Studies of flow-around of high-lift wing airfoil with combined energy sys-tem for the wing lifting force increasing. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 7-20. DOI: 10.34759/vst-2020-4-7—20
  26. Pavlenko O.V., Pigusov Е.А. Numerical Investigation of the Aerodynamic Loads and Hinge Moments of the Flap with Boundary Layer Control. AIP Conference Proceedings, 2018, vol. 1959, no. 1. DOI: 10.1063/1.5034652

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI