Studying aerodynamic interference of the unmanned aerial vehicles at the intervals and height variation in team flight

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-36-44

Аuthors

Golovnev A. V.*, Voronko D. S.**, Danilov S. M.***

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: golovnyev@rambler.ru
**e-mail: zapasnoi.mir@mail.ru
***e-mail: dsm2291@gmail.com

Abstract

The article presents the study of the aircraft mutual effect while subsonic for-mation flight at minimum distances with account for the height and interval variation of the wingman relative to the lead aircraft. The issue on aerodynamic characteristics changing in the formation flight is up-to-date for many years. The trail aircraft movement in the wake vortex is known to lead to the wingman aerodynamic characteristics changing. The wake vortex impact on the aircraft and its subsequent disturbed motion depend on the whole number of factors such as aircraft performance characteristics and a flight mode of both wingman and lead aircraft, spatial position of the aircraft relative to each other and the state of the surrounding atmosphere. For this reason, the problems of flight safety while moving in a wake vortex after the lead aircraft emerge. However, the flight at minimum distances between the aircraft formation flight may incur the aerodynamic quality growth as well, which will allow increasing the flight range and duration. Determining optimal position between the lead aircraft and a wingman will allow meeting the controversy of the requirements in the formation flight. This is especially up-to-date for the highly automated flight control systems, which are being installed including the unmanned aerial vehicles. The study was being conducted using Solid Works, Numeca Hexpress and Ansys Fluent software packages. The article presents the dependencies of the parameters being studied, namely the lift and drag coefficients, the pitch, roll and yaw moments on the interval and height of the wingman relative to the «flying wing» type lead aircraft. The authors show that computational methods application for the aerodynamic characteristics determining allows supplementing the results of experimental modeling in wind tunnels. Thus, with the interval between the aircraft axes of symmetry decreasing, the lift force increment increases and reaches its maximum at Δz/l = 0.9. The increment of the moment coefficients changing changes slightly herewith. Further, while further transversal spacing decrease, the sharp changing of coefficients of aerodynamic forces and moments starts due to approaching the lead aircraft vortex wake. While the trailing aircraft movement in the vortex wake (which symmetry axis coincides with the spatial position of the vortex core Δz/l = 0.5) the moment coefficients and drag force are maximum, and the lifting force increment is negative.

Keywords:

team flight, flight in trailing vortex, flight in close formation, computational aerodynamics, aerodynamic interference of the unmanned aerial vehicles

References

  1. Balyk V.M., Borodin I.D. Selection of stable design solutions for unmanned aerial vehicle under conditions of uncertainty factors action. Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 57–66. DOI: 10.34759/vst-2022-1-57-66
  2. Erbschloe D., Antczak A., Carter D.L. et al. Operationalizing Flight Formations for Aerodynamic Benefits. AIAA Scitech 2020 Forum (6–10 January 2020; Orlando, FL, USA). DOI: 2514/6.2020-1004
  3. Ryazanov L.F., Titov S.K., Sverkanov P.L. Taktika aviatsionnykh podrazdelenii i chastei. Chast’ 1. Organizatsiya i obespechenie boevykh deistvii (Aviation units and subunits tactics. Part 1. Combat operations organization and support), Moscow, MIREA, 2001, p. 10.
  4. Golovnev I.G., Vyshinsky V.V., Zhelannikov A.I., Lapshin K.V. Design concepts of an onboard early warning system of pilot about entering wake vortices from another aircraft. Civil Aviation High Technologies, 2018, vol. 21, no. 4, pp. 84–95. DOI: 10.26467/2079-0619-2018-21-4-84-95
  5. Ied K. Developing a technique for hazardous situations warning system design while piloting errors occurrence. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 201–209.
  6. Ginevskii A.S., Zhelannikov A.I. Vikhrevye sledy samoletov (Vortex traces of aircraft), Moscow, Fizmatlit, 2008, p. 16.
  7. Gusev D.I. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29077
  8. Zhelannikov A.I. Research of the a380 aircraft vortex wake impact on ms-21 class aircraft. Civil Aviation High Technologies, 2021, vol. 24, no. 1, pp. 23–31. DOI: 26467/2079-0619-2021-24-1-23-31
  9. Efremov A.V., Shcherbakov A.I., Korzun F.A., Prodanik V.A. Prospective means for the aircraft pilot induced oscillation suppression. Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 201–210. DOI: 10.34759/vst-2022-1-201-210
  10. Hanson C.E., Pahle J., Reynolds J.R. et al. Experimental Measurements of Fuel Savings During Aircraft Wake Surfing. AIAA Atmospheric Flight Mechanics Conference (25–29 June 2018; Atlanta, Georgia). DOI: 10.2514/6.2018-3560
  11. Beukenberg M., Hummel D. Aerodynamics, performance and control of airplanes in formation flight. 17 th Congress of the International Council of the Aeronautical Sciences (9–14 September 1990; Stockholm, Sweden). 2, pp. 1777–1794. ICAS-90-5.9.3. https://icas.org/icas_archive/icas1990/icas-90-5.9.3.pdf
  12. Bienawski S.R., Rosenzweig S.E., Blake W.B. Summary of Flight Testing and Results for the Formation Flight for Aerodynamic Benefit Program. 52nd Aerospace Sciences Meeting (13–17 January 2014; National Harbor, Maryland). DOI: 10.2514/6.2014-1457
  13. Istochnik: dlya upravleniya bespilotnikami «Okhotnik» razrabotayut dvukhmestnyi SU-57, URL: https://tass.ru/armiya-i-opk/11992083
  14. Seriinyi vypusk tyazhelykh udarnykh dronov «Okhotnik» nachnetsya v 2023 godu, 2022. URL: https://ria.ru/20220518/dron-1789229802.html
  15. Gulimovskii I.A., Greben’kov S.A. Applying a modified surface mesh wrapping method for numerical simulation of icing processes. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 29–36. DOI: 10.34759/vst-2020-2-29-36
  16. Anisimov K.S., Kazhan E.V., Kursakov I.A., Lysenkov A.V., Podaruev V.Y., Savel’ev A.A. Aircraft layout design employing high-precision methods of computational aerodynamics and optimization. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 7–19.
  17. Brutyan M.A., Vyshinskii V.V., Lyapunov S.V. Osnovy dozvukovoi aerodinamiki (Fundamentals of subsonic aero-dynamics), Moscow, Nauka, 2021, pp. 177–182.
  18. Murariu G., Mahu R.A., Murariu A.G. et al. Using Ansys for design and numerical study of a specific fixed wing UAV. Materiale Plastice, 2018, vol. 55, no. 4, pp. 652–657. DOI: 10.37358/MP.18.4.5095
  19. Animitsa O.V., Gaifullin A.M., Ryzhov A.A., Sviridenko Yu.N. Trudy MFTI, 2015, vol. 7, no. 1(25), pp. 3–15.
  20. Vyshinskii V.V., Sudakov G.G. Trudy MFTI, 2009, vol. 1, no. 3, pp. 73–93.
  21. Golovnev A.V., Tarasov A.L. Research of aerodynamic characteristics of the model of maneuverable aircraft with mechanized leading edge using software ansys fluent. Civil Aviation High Technologies, 2015, vol. 218, pp. 42–49.
  22. Popov S.A., Gondarenko Y.A. Mathematical model of the motion of a light attack aircraft with external load slings in the extreme area of flight modes according to the angle of attack. Civil Aviation High Technolo-gies, 2017, vol. 20, no. 2, pp. 65–73.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI