Air intakes parametric analysis method

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-76-90

Аuthors

Vetrov V. V., Chulkov N. S.*, Shilin P. D.**

Tula State University, TulGU, 92, Lenin av., Tula, 300012, Russia

*e-mail: Nikvoc92@yandex.ru
**e-mail: pvl.shilin@yandex.ru

Abstract

As of now, the interest to the functioning processes studying of the aircraft with ramjet power plants (RPP) has increased, which is being explained by the en-hancing possibilities of such systems operation analysis based the new qualitative tool of numerical mod-eling of complex gas-dynamic processes.

The fulfilled study performed the search of the said configurations based on the approach in the form of comparative analysis of merits and demerits of various structural schemes of the airflow duct of the air intake devices, applied on the certain class of aircraft and in various speed ranges.

The basic methods of the study are the methods for the gas-dynamic processes numerical modelling in the air duct of the air intake unit. The article presents the results of various structural schemes design. Variations of throttle characteristics as well as coefficients of extra aerodynamic drag, introduced by the air intake unit installing, were obtained for the developed schemes with the CFD modeling methods. Based on the energy efficiency analysis of the developed schemes, the most effective air intake units were selected.

The air intake unit operation effectiveness determines at large the RPP energy parameters. Besides the boundary layer, the disturbances caused by the aerodynamic surfaces and angles of attack relate as well to the number of factors capable of reducing the air intake unit gas-dynamic perfection.

It is found that the presence of angles of attack leads to a significant reduction of the air intake unit characteristics. Various degrees of sensitivity to external disturbances and angles of attack were obtained for the considered configurations as well.

The authors analyzed the airfoil and rudders effect on the air intake unit char-acteristics. It was found that vortex formation in the wing trace and shock waves, as well as unsteady perturbations led to the vortex trace forming, turbulized the flow and reduced its energy, affecting the air intake unit operation. As the result, rational position of the wings relative to the air intake unit has been selected.

To eliminate the said drawbacks, a modification of the internal compression air intake design has been proposed. The technical task of the proposed layout scheme consists in ensuring maximum possible throttle performance in the range of angles of attack of the aircraft from 0 to 5 degrees with minimum extra aerodynamic drag.

As the result, a method for the air intake unit functional specifics evalu-ating, which allows priority solutions selecting by their configurations, with account for the aircraft flight specifics and limitations imposed on it, has been created. A theoretical foundation for the SPP implementation on aircraft with specific flight conditions (the dominant energy-passive section of the trajectory) and stringent mass-and-size limitations in the design was created thereby.

Keywords:

unregulated air intake device of external and internal compression, AIU selection method, boundary layer, pressure recovery coefficient, throttle response, numerical simulation, boundary layer drain, ramjet power plant

References

  1. Sun X., Ge J., Yang T. et al. Multifidelity Multidisciplinary Design Optimization of Integral Sol-id Propellant Ramjet Supersonic Cruise Vehicles. International Journal of Aerospace Engineering, 2019, vol. 2019. Article ID 5192424. DOI: 10.1155/2019/5192424
  2. Khil’kevich V.Ya., Yanovskii L.S. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2005, no. 3, pp. 70–72.
  3. Dikshev A.I. Izvestiya Rossiiskoi Akademii Raketnykh i Artilleriiskikh Nauk, 2013, no. 4(79), pp. 37–47.
  4. Lokhtin O.I., Raznoschikov V.V., Aver’kov I.S. A technique for 3D-model developing of a flying ve-hicle with ducted rocket engine. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 131–139. DOI: 10.34759/vst-2020-2-131-139
  5. Fry R.S. A Century of Ramjet Propulsion Technology Evolution. Journal of Propulsion and Pow-er, 2004, vol. 20, no. 1, pp. 27–58. DOI: 10.2514/1.9178
  6. Aleksandrov V.N., Bytskevich V.M., Verkholomov V.K. et al. Integral’nye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta (Integral direct-flow air-jet engines on solid fuels. Fundamentals of theory and calculation). Moscow, Akademkniga, 2006, 343 p.
  7. Dikshev A.I., Kostyanoi E.M. Trudy MAI, 2014, no. 74. URL: https://trudymai.ru/eng/published.php?ID=49300
  8. Fomin V.M., Zvegintsev V.I., Mazhul’ I.I., Shumskii V.V. Prikladnaya mekhanika i teoreticheskaya fizika, 2010, vol. 51, no. 6, pp. 21–30.
  9. Moerel J.-L., Veraar R.G., Halswijk W.H.C. et al. Internal Flow Characteristics of a Rectangular Ramjet Air Intake. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (02-05 August 2009; Denver, Colorado). AIAA 2009-5076. DOI: 10.2514/6.2009-5076
  10. Krause M., Ballmann J. Numerical Simulations and Design of a Scramjet Intake Using Two Different RANS Solvers. 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (08–11 July 2007; Cincinnati, OH). AIAA 2007-5423. DOI: 10.2514/6.2007-5423
  11. Albadwi А., Faisa А., Abdelhalim М., Salih А., Khalil М., Musa О. Design and Analysis of an Air Intake System of Ramjet Engine Using CFD Simulations. International Journal of Engineering and Information Systems (IJEAIS), 2021, vol. 5, no. 2, pp. 180–190.
  12. Masud J. Flow Field and Performance Analysis of an Integrated Diverterless Supersonic Inlet. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (04-07 January 2010; Orlando, Florida). AIAA 2010-481. DOI: 10.2514/6.2010-481
  13. Satyanarayana A., Theerthamalai P., Santhakumar S. Computational Aerodynamic Study of Body-Intake Con-figurations. 44th AIAA Aerospace Sciences Meeting and Exhibit (09–12 January 2006; Re-no, Nevada). AIAA 2006-861. DOI: 10.2514/6.2006-861
  14. Sukhov A.V., Fedotova K.V., Shmarkova L.I. Nauka i Obrazovanie. MGTU im. N.E. Baumana, 2014, no. 11, pp. 345–356. DOI: 10.7463/1114.0740091
  15. Rakhmanin D.A. Materialy XXVIII nauchno-tekhnicheskoi konferentsii po aerodinamike (20–21 April 2017; Volodarskogo). Zhukovskii, TsAGI, 2017, p. 193.
  16. Obodovskaya E.A., Gol’dfel’d M.A., Korotaeva T.A. Materialy XVI Vserossiiskogo seminara s mezhdunarodnym uchastiem «Dinamika mnogofaznykh sred» (30 September — 05 October 2019; Novosibirsk). Novosibirsk, Institut teoreticheskoi i prikladnoi mekhaniki im. S.A. Khristianovicha Sibirskogo otdeleniya RAN, pp. 132–133.
  17. Vinogradov V.A., Kusyukbaeva D.I., Stepanov V.A. Materialy XXXVIII Mezhdunarodnoi shkoly-seminara «Modeli i metody aerodinamiki» (04-11 June 2018; Evpatoriya). Zhukovskii, TsAGI, 2018, pp. 51–52.
  18. Novogorodtsev E.V., Karpov E.V., Koltok N.G. Characteristics improvement of spatial fixed-geometry air intakes of external compression based on boundary layer control systems application. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 7–27. DOI: 10.34759/vst-2021-4-7-27
  19. Sorokin V.A., Norenko A.Yu., Loginov A.N. et al. Izvestiya Rossiiskoi Akademii Raketnykh i Artilleriiskikh Nauk, 2019, no. 2(107), pp. 84–93.
  20. Rogozin A.D., Maksimov S.S. Oboronnaya tekhnika, 2015, no. 9, pp. 148–151.
  21. Zatoloka V.V., Aleksandrovich E.V., Semenov A.A., Trifonov A.K. Trudy TsAGI, Moscow, Izdatel’skii otdel TsAGI, 1968, pp. 14–31.
  22. Vetrov V.V., Shilin P.D. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2022, no. 68, pp. 21–29. DOI: 10.15593/2224-9982/2022.68.03
  23. Vetrov V.V., Vorob’ev A.A., Morozov V.V., Shilin P.D. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM «Modul’ rascheta traektornykh parametrov manevriruyushchego letatel’nogo apparata s pryamotochnoi silovoi ustanovkoi» No. RU2022665225, 08.2022 (Certificate of state registration of computer programs «Module for calculating trajectory parameters of a maneuvering aircraft with a ramjet power plant», no. 2022665225, 11.08.2022).

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI