Aeronautical and Space-Rocket Engineering
DOI: 10.34759/vst-2023-1-107-116
Аuthors
1, 2*, 1, 2**, 1***1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Toropov Machine-Building Design Bureau "Vimpel", 90, Volokolamskoe shosse, Moscow, 125424, Russia
*e-mail: matkovskiyno@yandex.ru
**e-mail: erm_a@mail.ru
***e-mail: tishkovvv@mai.ru
Abstract
Designing the state-of-the-art aircraft requires new structural solutions and applica-tion of fundamentally new materials and technological processes for their manufactiring.
The aircraft hardware compartment was selected as the object of research. Temperature indicators on the aircraft hull are directly related with its speed. Thus, among all design tasks the authors chose the task of temperature level reduction inside the onboard hardware compartment to ensure its uninterruptible operation. Mathematical modeling of intensive aerodynamic heating impact on the hardware part of the aircraft hull performed by the authors allowed obtaining steady state vapues of its hardware temperature at the level exceeding the marginal allowable value. The article regards a method for the aircraft hardware compartment temperature reduction employing aircraft onboard hardware passive thermal protection means based on the new class materials application.
A discrete fiber material based on aluminum oxide and quartz fiber (aerogel) is under study as an internal thermal protective coating (TPC). The article considers the hardware compartment structure with account for internal TPC (aerogel) and external TPC (composite erosion-resistant material), and presents the temperature values obtained for various TPC types, which ensure the necessary temperature level inside the compartment.
Analysis of the results of mathematical modeling, performed by the authors, of the intensive aerodynamic heating impact on the aircraft reveals the effectiveness of the aerogel application. This material allowed the aircraft hardware temperature reduction to 86°C. The stress-strain state modeling confirmed the strength of the load-bearing aircraft compartment structure involving external composite material (CM). The article demonstrates that fundamentally new material of the internal TPC, namely aerogel, leads to the onboard hardware temperature reduction by 4 °C without the external TPC application, and by 12 °C with the CM application as the external TPC. Despite the heat-protective layer reduction of the internal TPC, introduction of the external TPC from the erosion-resistant CM leads not only to the temperature level reductioin inside the aircraft compartment, realizing the temperature operative range, but it reduces the temperature on the titanium hull as well, which allows varying the material, both hull and external CM thickness for the hull mass reduction.
Keywords:
aircraft aerodynamic heating, onboard hardware active thermal protection technology, heat-protective coating of the aircraft instrument compartment hull, aerogel, thermal conductivity of composite materials based on aerogel, heat-stressed state of the composite airframeReferences
- Shilkin O.V., Kishkin A.A., Zuev A.A., Delkov A.V., Lavrov N.A. Passive cooling system designing for a spacecraft onboard complex. Aerospace MAI Journal, 2021, vol. 28, no 2, pp. 96–106. DOI: 10.34759/vst-2021-2-96-106
- Shilkin O.V., Kolesnikov A.P., Kishkin A.A., Zuev A.A., Delkov A.V. Designing passive thermal control system with a capacity of up to 3 kW by heat pipes and active heating elements for a spacecraft. Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 67–80. DOI: 10.34759/vst—2022—1—67—80
- Volkov V.N., Gusev A.N., Ivakha V.V. Heat-loaded trajectory selection for durability valuation of aviation guided missile air-frame. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 43–48.
- Guseinov A.B. Osobennosti razrabotki krylatykh raket (Specifics of the cruise missiles development), Moscow, MAI, 2015, 106 p.
- Komarov I.M., Epishin K.V., Zernyukov D.V. et al. Innovatika i ekspertiza: nauchnye trudy, 2017, no. 1(19), pp. 204–214.
- Ashikhmina E.R., Ageeva T.G., Prosuntsov P.V. Teplovye protsessy v tekhnike, 2018, vol. 10, no. 5–6, pp. 266–273.
- Kolychev A.V. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29053
- Naved I., Hermann T., McGilvray M. Numerical simulation of transpiration cooling for a high-speed vehicle with substructure. AIAA Journal, 2021, vol. 59, no. 8. DOI: 10.2514/1.J059771
- Gusev A.N., Zaitsev A.V., Ivakha V.V., Yudakov S.V. Materialy XII Mezhdunarodnogo seminara «Supervychisleniya i matematicheskoe modelirovanie», Sarov, RFYaTs-VNIIEF, 2011, pp. 127–134.
- Gusev S.A., Nikolaev V.N. Materialy XXII Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Reshetnevskie chteniya» (12–16 November 2018, Krasnoyarsk). Vol. 2, pp. 111–112.
- Balinova Yu.A., Grashchenkov D.V., Shavnev A.A. et al. Vestnik Kontserna VKO «Almaz — Antei», 2020, no. 2(33), pp. 83–92. DOI: 10.38013/2542-0542-2020-2-83-92
- Caywood W.C., Rivello R.M., Weckesser L.B. Tactical missile structures and materials technology. Johns Hopkins APL Tech-nical Digest, 1983, vol. 4, no. 3, pp. 166–174. URL: https://www.jhuapl.edu/Content/techdigest/pdf/V04-N03/04-03-Caywood.pdf
- Bi C., Tang G.H., Hu Z.J. Heat conduction modelling in 3-D ordered structures for prediction of aerogel thermal conductivity. International Journal of Heat and Mass Transfer, 2014, vol. 73, pp. 103–109. DOI: 10.1016/j.ijheatmasstransfer.2014.01.058
- Bo Yuan, Shuqiang Ding, Dongdong Wang, Gang Wang, Hongxia Li. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Materials letters, 2012, vol. 75, pp. 204–206. DOI: 10.1016/j.matlet.2012.01.114
- Tumanov A.T. (ed.) Aviatsionnye materialy. Spravochnik V 9 t. T. 8 «Teplozvukoizolyatsionnye, dekorativno-otdelochnye tekstil’nye i lakokrasochnye materialy, silikatnye emali» (Aviation materials. Handbook. In 9 vols. Vol. 8 «Thermal-sound insulating, decorative and finishing textile and paint materials, silicate enamels»), 6th ed., Moscow, ONTI, 1974. 236 p.
- Babashov V.G., Varrik N.M., Karaseva T.A. Trudy VIAM, 2019, no. 6(78), pp. 32–42. DOI: 10.18577/2307-6046-2019-0-6-32-42
- Babashov V.G., Varrik N.M. Trudy VIAM, 2015, no. 1. DOI: 10.18577/2307-6046-2015-0-1-3-3
- Jin L., Li P., Zhou H. et al. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel. Progress in Natural Science: Materials International, 2015, vol. 25, no. 2, pp. 141–146. DOI: 10.1016/j.pnsc.2015.03.006
- Raskutin A.E., Sokolov I.I. Trudy VIAM, 2013, no. 4. URL: http://viam-works.ru/plugins/content/journal/uploads/articles/pdf/29.pdf
- Abdrakhmanov F.Kh., Volosov D.R., Karpuzikov S.A. et al. Vestnik Kontserna VKO «Almaz — Antei», 2018, no. 3, pp. 87–97. DOI: 10.38013/2542-0542-2018-3-87-97
- Matkovskiy N.O. Materialy XXII Vserossiiskogo mezhotraslevogo molodezhnogo konkursanauchno-tekhnicheskikh rabot i proektov v oblasti aviatsionnoi i raketno-kosmicheskoi tekhniki i tekhnologii «Molodezh’ i budushchee aviatsii i kosmonavtiki» (23–27 November 2020; Moscow), Moscow, Logotip, 2020, p. 239. URL: https://mforum.mai.ru/files/MFORUM-2020.pdf
- Tumanov A.T. (ed.) Aviatsionnye materialy. Spravochnik v 9 t. T. 7, ch. 1 «Polimernye kompozitsionnye materialy» (Aviation materials. Handbook. In 9 vols. Vol. 7, part 1 «Polymer composite materials»), 6th ed., Moscow, ONTI, 1976, 391 p.
- Ermolaev A.Yu., Zuev A.A., Matkovskiy N.O. Materialy VIII Mezhdunarodnoi konferentsii s elementami nauchnoi shkoly dlya molodezhi «Funktsional’nye nanomaterialy i vysokochistye veshchestva» (5–9 October 2020; Suzdal), Moscow, IMET RAN, 2020, pp. 145–146.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |