Modification of the pilot behavior structural model and its application to the task of selecting the characteristics and type of inceptors

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-167-179

Аuthors

Efremov A. V.1*, Efremov E. V.2

1. ,
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: pvl@mai.ru

Abstract

The present paper is devoted to the modification of the structural model of pilot behavior, which allows to evaluate the influence of the characteristics and type of inceptor on the properties of the pilot-aircraft system. To this purpose, a series of experiments was performed employing MAI’s ground-based simulator to determine the regularities of the pilot-aircraft system when using a center and side stick, different types of control signals sent to the flight control system (proportional to the displacement and proportional to the forces applied), as well as different characteristics of the inceptor (stiffness and damping). Two configurations from the HAVE PIO database were selected as the controlled element dynamics, one corresponding to Level I flying qualities, the other corresponding to Level III. In the experiments, the operators performed a compensatory pitch angle tracking task.

Studies have shown that in terms of piloting accuracy, the optimum value of center stick stiffness for both types of control signals and controlled element dynamics corre-sponds to 10 N/cm. With a side stick, the optimum stiffness takes the value 20 N/cm. In all cases considered, the best piloting accuracy is achieved with minimal damping.

Studies have also shown that the piloting accuracy for a Level I flying qualities configuration is 1.5 and 1.6 times better when using a center and side stick, respectively, com-pared to displacement sensing control in a Level I configuration. For a Level III configuration, this transition is accompanied by an improvement in accuracy by 1.25 and 1.3 times. In addition to piloting accuracy, force sensing control reduces the equivalent phase delay introduced by the pilot and improves other parameters of the pilot-aircraft sys-tem.

Overall, the transition from a traditional DSC-type center stick to a FSC-type side stick results in a 2.3-fold improvement in piloting accuracy when controlling configurations which belong to the first level of flying qualities and a 1.9-fold im-provement when controlling configurations which belong to the third level.

Based on the results obtained, a modification of the structural model of pilot behavior was proposed. This model takes into account the models of visual cue perception and the neuromuscular system, inceptor dynamics, correction of information received from proprioceptive feedback which closes the «neuromuscular system + inceptor» system. When a command signal is proportional to the displacement, the inceptor model is in the direct loop of this system, and when the pilot’s force input is used as such a signal, the inceptor model moves into the feedback loop. Different models and parameters of neuromuscular dynamics are used in the study of the effects of the center and side stick. In addition, the model takes into account noise in the perception of visual and kinesthetic information. The spectral density of the latter is proportional to the variance of inceptor displacement. Due to the results of experimental studies having shown that the noise components of signals are inversely proportional to the stiffness and directly proportional to the damping, the parameters of inceptor stiffness and damping are introduced into the model of this spectral density.

The parameters determining the correction of visual and proprioceptive cues are chosen by minimizing a functional consisting of the sum of the error signal variance and a summand proportional to the variance of the forces applied to the inceptor and its stiffness. This summand was added to match the optimal values of stiffness obtained in experiments and in mathematical modeling.

The use of the proposed model makes it possible to obtain results close to the results of experimental studies, as well as to assess the influence of inceptor characteristics, inceptor type, and the type of control signal on the characteristics of the pilot-aircraft system.

Keywords:

pilot-aircraft system, structural model of pilot behavior, inceptor, model of neuromuscular system

References

  1. Tikhonov V.N. Analysis of accuracy characteristics, probabilistic characteristics and expert evaluations of aircraft by the pilots while in-flight refueling. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 219–231. DOI: 10.34759/vst-2021-4-219-231
  2. Zaichik L.E., Desyatnik P.A., Zhelonkin V.I., Zhelonkin M.V., Tkachenko O.I., Yashin Y.P. Mobility effect of flight simu-lator cabin on aircraft in-flight refueling problem modeling. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 86–94.
  3. Animitsa O.V., Gaifullin A.M., Ryzhov A.A., Sviridenko Yu.N. Trudy MFTI, 2015, vol. 7, no. 1(25), pp. 3–15.
  4. Kukushkin L.S., Vyshinskii V.V. Trudy MFTI, 2013, vol. 5, no. 2, pp. 46–58.
  5. Kostin P.S., Vereshchagin Yu.O., Voloshin V.A. Trudy MAI, 2015, no. 81. URL: https://trudymai.ru/eng/published.php?ID=57735
  6. McRuer D.T., Krendel E.S. Dynamic response of human operators. Wright Air Development Center. WADC TR-56-524, 1957.
  7. McRuer D.T., Krendel E. S. Mathematical models of human pilot behavior. Advisory group for aero-space research and development. AGARD-AG-188, 1974, 72 p.
  8. Baron S., Elkind J.I., Kleinman D. et al. Application of optimal control theory to the preduction of human performance in a complex task. Fifth Annual Conference on Manual Control. NASA-SP 215, 1969, pp. 367–387.
  9. Hess R. Structural model of the adaptive human pilot. Journal of Guidance and Control, 1979, vol. 3, no. 5, pp. 416–423. DOI: 10.2514/3.56015
  10. Zeyada Y., Hess R.A. PVDNL, Pilot/Vehicle Dynamics (nonlinear), An Interactive Computer Program for Modeling the Human Pilot in Single-Axis Linear and Non-Linear Tracking Tasks. Department of Mechanical and Aeronautical Engineering, University of California, Davis, 1999.
  11. Vereshchikov D.V., Zhuravskii K.A., Kostin P.S. Motion control quality assessment of maneuverable aircraft. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 191–205. DOI: 10.34759/vst-2021-2-191-205
  12. Tikhii I.I., Kashkovskii V.V., Poluektov S.P. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2009, no. 4(24), pp. 210–214.
  13. Tan W., Efremov A.V., Tiumentsev Y.V. An evaluation of aircraft handling qualities by means of neural network based prediction model for characteristics of pilot control actions. Aerospace MAI Journal, 2008, vol. 15, no. 1, pp. 92–108.
  14. Efremov A.V., Rodchenko,V.V., Boris S.Yu. Investigation of pilot induced oscillation tendency and prediction criteria development. Wright Lab. Final report WL-TR-96-3109, 1996, 293 p.
  15. Efremov A.V., Alexandrov V.V., Koshelenko A.V. et al. Development of pilot modeling and its application to manual control tasks. 27th Congress of the International Council of the Aeronautical Sciences (19-24 September 2010, Nice, France).
  16. Efremov A.V., Alexandrov V.V., Efremov E.V., Vukolov M.V. The influence of different types of inceptors and their characteristics on the pilot-aircraft system. 2nd IFAC Conference on Cyber-Physical & Human Systems (14-15 December 2018; Maimi, Florida, USA). 2019. Vol. 51. No. 34, pp. 372–377. DOI: 10.1016/j.ifacol.2019.01.013
  17. Zaichik L.E., Grinev K.N., Yashin Y.P., Sorokin S.A. Control stick force characteristics effect on pilot model parameters. Aerospace MAI Journal, 2017, vol. 24, no. 1, pp. 113–122.
  18. Ragulin I.A., Aleksandrov V.V. Lag effect impact in the control system channel of highly automated aircraft on the control lever type selection and its command signal. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 177–188. DOI: 10.34759/vst-2021-2-177-190
  19. Hosman R.J.A.W., Benard B., Fourquet H. Active and passive side stick controllers in manual aircraft control. IEEE International Conference on Systems, Man and Cybernetics (04-07 November 1990; Los Angeles, CA, USA). DOI: 10.1109/ICSMC.1990.142165
  20. Mitchell D.G., Aponso B.L., Klyde D.H. Effects of Cockpit Lateral Stick Characteristics on Handling Qualities and Pilot Dynamics. NASA Contractor Report CR-4443, 1992. URL: 19920019341.pdf
  21. Klyde D.H., McRuer D.T. Smart-Cue and Smart-Gain Concepts Development to Alleviate Loss of Control. Journal of Guidance, Control, and Dynamics, 2009, vol. 32, no. 5, pp. 1409–1417. DOI: 10.2514/1.43156
  22. Malpica C.A., Lusardi J.A. Handling qualities analysis of active inceptor force-feel characteristics. 69th American Helicopter Society International Annual Forum (21–23 May 2013; Phoenix, Arizo-na, USA).
  23. Bjorkman E.A. et al. NT-33. Pilot induced oscillation prediction evaluation. Technical Report USAFTPS-TR-85B-S4, 1986, 165 p.
  24. Efremov A.V., Ogloblin A.V., Predtechenskii A.N., Rodchenko V.V. Letchik kak dinamicheskaya Sistema (Pilot as a dynamic system), Moscow, Mashinostroenie, 1992, 331 p.
  25. Obolenskii Yu.G. Upravlenie poletom manevrennykh samoletov (Flight control of maneuverable aircraft), Moscow, Voenizdat, 2007, 480 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI