Surveys of optimization methods of cruise flight with long range cruise modes

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-180-189

Аuthors

Markiewicz P.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: przemek.markiewicz@mail.ru

Abstract

The cruise flight is the main phase of the flight of long-haul air-craft, which mainly determines the effectiveness of entire flight. The cruise flight effectiveness depends on the selected flight mode. Typical cruise modes include maximum range mode, maximum cruising mode as well as compromise modes. Compromise modes selection are being performed by the flight costs indicator of the flight at the given range. This indicator employing is possible only at known values of the fuel cost and cost indicator, which are the uncertainty source in the tasks of the long-haul aircraft effectiveness studying.

The article proposes considering the problem of compromise modes selection under uncertainty conditions for a certain range, employing flight costs indicator presented in analytical form. The search for the compromise modes is being performed on a set of modes, limited by the maximum range mode and maximum cruising mode, which we will call the set of optimal modes. Partial criteria of the effectiveness indicator such as fuel consumption and flight speed are deter-mined on such set. Analytical effectiveness indicator is the sum of normalized partial criteria with weight coefficients that are the parameters of the task. The flight mode selection under uncertainty conditions is being performed in the minimax problem setting using the analytical weight coefficients. The weight coefficient in this indicator can be interpreted two-fold, which allows considering the problem of compromise mode selection in two formulations, such as operational and trajectory. In the operational formulation of the problem, the weight coefficient is the normalized value of the cost index and does not change along the flight path. In the trajectory formulation of the problem, the weight coefficient is a measure of relative importance between fuel consumption and flight time and can vary along the flight path.

The studies of the compromise conditions achieving in the trajectory formulation of the problem for various values of the cruise range allowed identifying the optimal range, different from the maximum range, for which the compromise mode can be considered optimal. The optimal range obtained by the trajectory method is an objective criterion for change flight level at the compromise flight modes. The said criterion allows objectively selecting the point of transition to another flight level and improve thereby the operational performance of the entire flight (such as the required flight fuel margin and the flight endurance). The optimal range in the operational formula-tion of the problem is the maximum range.

The article presents an example of cruise flight optimization under the flight conditions at different flight levels, which results demonstrate the ability to reduce the required fuel and flight endurance compared to this flight implementation in the maximum flight range, maximal cruis-ing and operational compromise flight mode. The effect of the flight altitude and the payload (the aircraft weight at the cruise flight termination) on the optimal range value in comparison with the maximum range was established as well. The results of the cruise flight effectiveness studying, obtained by the trajectory method, may be useful for the development of a flight manual and flight paths optimization problem of long-haul aircrafts. The object of research is the Il-96-300 long-haul aircraft.

Keywords:

compromise flight modes, multi-purpose approach, cruise flight optimization, multi-criteria analysis of cruise flight, cruise flight performance indicators, separation criterion

References

  1. Penner J.E., Lister D., Griggs D.J. et al. Aviation and the Global Atmosphere: A Special Re-port of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1999, 384 p.
  2. Brusov V.S., Baranov S.K. Optimal’noe proektirovanie letatel’nykh apparatov (Optimal design of aerial vehicles), Moscow, Mashinostroenie, 1989, 232 p.
  3. Vorob’ev V.G., Kuznetsov S.V. Avtomaticheskoe upravlenie poletom samoletov (Aircraft automatic flight control), Moscow, Transport, 1995, 448 p.
  4. Markevich P. Nauchnyi vestnik GosNII GA, 2022, no. 39, pp. 72–80.
  5. Poles D., Nuic A., Mouillet V. Advanced aircraft performance modeling for ATM: Analysis of BADA model capabilities. 29th Digital Avionics Systems Conference (03–07 October 2010; Salt Lake City, UT, USA), pp. 1.D.1—1. DOI:10.1109/DASC.2010.5655518
  6. Piyavskii S.A., Brusov V.S., Khvilon E.A. Optimizatsiya parametrov mnogotselevykh letatel’nykh apparatov (Parameters optimization of the multi-purpose aircraft), Moscow, Mashinostroenie, 1974, 168 p.
  7. Piyavskii S.A. Ontologiya proektirovaniya, 2018, vol. 8, no. 3(29), pp. 449–468. DOI: 10.18287/2223-9537-2018-8-3-449-468
  8. Piyavskii S.A. Ontologiya proektirovaniya, 2019, vol. 9, no. 2(32), pp. 282–298. DOI: 10.18287/2223-9537-2019-9-2-282-298
  9. Balyk V.M., Kalutsky N.S. A statistical synthesis of stable design choices for flying vehicle design processes in conditions of multiple-factor uncertainty. Aerospace MAI Journal, 2008, vol. 15, no. 1, pp. 29–36.
  10. Balyk V.M., Vedenkov K.V., Kulakova R.D. Methods of structural and parametric synthesis of multipurpose aircraft systems with multidimensional external heterogeneous target set. Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 49–59.
  11. Markevich P. Nauchnyi vestnik GosNII GA, 2020, no. 30, pp. 58–66.
  12. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi-target uncertainty. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 7–15.
  13. Khalin V.G. (ed.) Teoriya prinyatiya reshenii. V 2 t. T. 2. Uchebnik i praktikum dlya bakalavriata i magistratury (Decision Theory. Vol. 2. Textbook and practice for bachelor and master programs), Moscow, Yurait, 2017, 431 p.
  14. Brusov V.S., Odnovolik Yu.V. Nauchnyi vestnik MGTU GA, 2013, no. 2(188), pp. 15–18.
  15. Brusov V.S., Odnovolik Yu.V. Nauchnyi Vestnik MGTU GA, 2012, no. 175, pp. 78–83.
  16. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. et al. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie-Polet, 2017, 775 p.
  17. Cook A. European Air Traffic Management: Principles, Practice and Research. New York, Routledge, 2016, 279 p.
  18. Kalinichenko B.V. Letnye kharakteristiki samoletov s gazoturbinnymi dvigatelyami (Flight characteristics of aircraft with gas turbine engines), Moscow, Mashinostroenie, 1986, 144 p.
  19. Byushgens G.S. (ed.) Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of mainline aircraft), Moscow, Izdatel’skii otdel TsAGI; Pekin: Avia-izdatel’stvo KNR, 1995, 772 p.
  20. Sanz Á., Claramunt C., Comendador V.F.G. et al. Air traffic management based on 4D-trajectories: requirements and practical implementation. 9th EASN International Conference on «Innovation in Aviation & Space», 2019, vol. 304, no. 2, pp. 5001–5009. DOI: 10.1051/matecconf/201930405001

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI