Bench calibration technique for microelectromechanical gyroscopes based on a robot manipulator

Machine-building Engineering and Machine Science


DOI: 10.34759/vst-2023-1-190-197

Аuthors

Espinoza Valles A. S.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: esalvator24@gmail.com

Abstract

Spacecraft orientation determining and angular motion control are among the crucial tasks being solved in the space-rocket engineering area. Measuring modules, including gyroscopes based on microelectromechanical systems (MEMS), are employed to solve this problem in the nano-class spacecraft. However, MEMS gyroscopes belong to the type of sensors of relatively medium and low measurement accuracy. Besides, space factors, such as cosmic radiation, solar activity, aerodynamic forces, or temperature gradients, lead to the sensor reading drift over time, depending on its stability. The sensors of inertial navigation systems are calibrated thereby automatically in flight. Despite this fact, the pre-flight ground calibration, which is necessary to be performed to confirm all sensors integrated into the system correspond to the minimum requirements placed on the space mission, occupies an important place. There are special turntables on the market for gyroscopes calibration, which set predefined turns at certain velocities and orientations, though they are rather costly. As of now, robot manipulators are widespread all over the world, and they are most often employed to perform certain motions with high precision. In this sense, robot manipulator represents a possible option for solving this issue. Thus, the article proposes reliable technique for bench calibration employing robot manipulator to eliminate systematic errors of commercial MEMS gyroscopes. The main idea of this technique is based on using the wrist of robot manipulator as a high-precision rotary device. The author proposes a modified six-position method in the form of the sequence of rotations to perform laboratory calibration. This technique allows determining systematic errors of the sensor output signals, particularly bias, scale factor and the axes non-orthogonality. Bench tests form a set of experimental data for subsequent processing by the calibration algorithms, and allow identifying all systematic errors and assess the degree of applicability of this bench. For this technique testing, a Strapdown Inertial Navigation System was manufactured, and bench tests were performed, which revealed the possibility of employing a robot manipulator as a calibration instrument. The features of the results of processing experimental measurement data during tests of commercial gyroscopes using this technique are described. The application of the developed approach leads to a five-fold reduction of the error by five times compared to to raw measurements.

Keywords:

MEMS gyroscopes calibration, mathematical model of measurement, modified six-position method, strapdown inertial navigation system

References

  1. You Z., Bin L., Yu S., Zhang G. Applications of MEMS devices in nanosatellite. 2nd In-ternational Conference on Recent Advances in Space Technologies (09–11 June 2005; Is-tanbul, Turkey), pp. 240–243. DOI: 10.1109/RAST.2005.1512569
  2. Borisov M.V., Zakharov M.A., Chernomorskii A.I., Chirkin M.V. Methods for determining the synchronization threshold of counter-propagating waves in a small-sized laser gyroscope. Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 170–178.
  3. Aleshin B.S., Maximov V.N., Chernomorskii A.I., Plekhanov V.E. Integrated measurement navigation system for uniaxial wheeled module. Aerospace MAI Journal, 2012, vol. 19, no. 4, pp. 120–128.
  4. Kolomentsev A.I., Yakutin A.V. Research of working processes in MEMS based liquid microthruster. Aero-space MAI Journal, 2010, vol. 17, no. 4, pp. 90–95.
  5. Shavrin V.V., Konakov A.S., Tislenko V.I. Doklady TUSURa, 2012, no. 1(25). Part 2, pp. 265–269.
  6. Lee D., Lee S., Park S. and Ko S. Test and Error Parameter Estimation for MEMS — Based Low Cost IMU Calibration. International Journal of Precision Engineering and Manufacturing, 2011, vl. 12, no. 4, pp. 597–603. DOI: 10.1007/s12541-011-0077-9
  7. Niu X., Li Y., Zhang H. et al. Fast Thermal Calibration of Low-Grade Inertial Sensors and Iner-tial Measurement Units. Sensors, 2013, vol. 13, no. 9, pp. 12192–217. DOI: 10.3390/s130912192
  8. Ban J., Wang L., Liu Z., Zhang L. Self-calibration method for temperature errors in multi-axis rotational inertial navigation system. Optics Express, 2020, vol. 28, no. 6. DOI: 10.1364/OE.384905
  9. Lyu P., Lai J., Liu J., Nie M. The Compensation Effects of Gyros’ Stochastic Errors in a Rotational Inertial Navigation System. Journal of Navigation, 2014, vol. 67, no. 6, pp. 1069–1088. DOI: 10.1017/S0373463314000319
  10. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsial’nye navigatsionnye sistemy (Strapdown inertial navigation systems), Kirovograd, Polimed, 2011, 171 p.
  11. Poddar S., Kumar V., Kumar A. A Comprehensive Overview of Inertial Sensor Calibration Techniques. Journal of Dynamic Systems Measurement and Control, 2016, vol. 139, no. 1: 011006. Paper No: DS-16-1027. DOI:10.1115/1.4034419
  12. Wang L., Zhang T., Ye L. et al. An Efficient Calibration Method for Triaxial Gyroscope. IEEE Sensors Journal, 2017, vol. 21, no. 18, pp. 19896–19903. DOI: 1109/JSEN.2021.3100589
  13. Royo D. Development of a calibration procedure for gyroscopes in CubeSat missions. Space En-gineering, master’s level, 2021, 105 p.
  14. Kozlov A., Sazonov I., Vavilova N. IMU calibration on a low grade turntable: Embedded estimation of the instrument displacement from the axis of rotation. 1st International Symposium on Inertial Sensors and Systems (25–26 February 2014; Laguna Beach, CA, USA). DOI:10.1109/ISISS.2014.6782525
  15. Veremeenko K.K., Zheltov S.Yu., Kim N.V. et al. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aircraft), Moscow, Fizmatlit, 2009, 556 p.
  16. Osipov A. M., Kozorez D. A., Sypalo K. I. Solution to the problem of high-speed flying vehicle navigation. Aerospace MAI Journal, 2011, vol. 18, no 4, pp. 5–19.
  17. Titterton D., Weston J.L., Weston J. Strapdown Inertial Navigation Technology, 2nd Edition. The Institution of Engineering and Technology, 2004, 576 p.
  18. Avrutov V.V. Ispytaniya inertsial’nykh priborov (Testing of inertial devices), Kiev, KPI im. Igorya Sikorskogo, 2016, 205 p.
  19. Zhang R., Höflinger F., Reind L.M. Calibration of an IMU using 3-D rotation platform. IEEE Sensors Journal, 2014, vol. 14, no. 6, pp. 1778–1787. DOI: 10.1109/JSEN.2014.2303642
  20. Panchanand J. Inverse kinematic analysis of robot manipulators. A thesis for the award of the degree of Doctor of Philosophy. National Institute of Technology Rourkela, India, 2015, 336 p.
  21. Bai S., Lai J., Lyu P. et al. A System-Level Self-Calibration Method for Installation Errors in A Dual-Axis Rotational Inertial Navigation System. Sensors, 2019, vol. 19, no. 18: 4005. DOI: 10.3390/s19184005

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI