The study of flow physical specifics in a 2D supersonic air intake unit

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-2-35-45

Аuthors

Rakhmanin D. A.*, Karpov E. V.**, Rakhmanina V. E.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: d.rakhmanin@gmail.com
**e-mail: e-karpov@list.ru

Abstract

In modern supersonic aircraft, air intake units (AIU) exert a key effect on the entire power plant operation. The AIU main purpose is the gas flow supplying to the engine with minimal total pressure loss. The AIU development is a complex scientific and engineering task, which solution is being put into effect with computational and experimental methods.

The presented article considers methodological issues related to validation of the ANSYS Fluent software package (TsAGI license No. 501024), and provides a detailed description of the physical processes occurring in the AIN channel while throttling.

The authors performed numerical simulation of the flow in a flat supersonic AIU employing various turbulence models. The AIU geometry was borrowed from [1]. The oncoming flow parameters were as follows: Mach number М= 2.41, angle of attack α = 10°, Reynolds number Reх∞=5.07 × 107 [1/m], total pressure P0 = 540 кPa, total temperature T0 = 305 К. Data obtained by computing the static pressure distribution on the AIU channel walls were being compared with the experimental results from [1]. The authors revealed that the best match of computed and experimental data on static pressure distribution of the AIU upper and lower walls are ensured by the two turbulence models, namely k-ωSST-CC (CC stands for compressibility correction) and Reynolds Stress Model.

The turbulence model k-ω SST—СС, considered in more detail in this article, allows reproducing a qualitative flow pattern with stationary separation zones, shock waves (including those from separation zones), rarefaction waves, and vorticity regions.

The two-dimensional calculation comparison with the three-dimensional one revealed that the Mach number fields were practically the same for both 3D- and 2D-flow in the AIU symmetry plane. An angular vortex is being formed near the AIU side wall, which drastically changes in the sections close to the wall the flow field and static pressure distribution on the AIU channel lower wall in the transverse direction compared to the flow in the AIU plane of symmetry.

To study the effect of backpressure being set at the channel outlet boundary on the flow field properties of the supersonic air intake, throttling of the model channel was being executed. The backpressure coefficient d was equal to d = Pback/Р, where Pback is the static pressure set at the outlet boundary of the channel, and Р is the static pressure of the incident flow.

The studies revealed that with the opened throttle (d = 0) the flow in the AIU channel was supersonic. The local zone of the boundary layer separation originates herewith behind the break in its contour and a fan of rarefaction waves in the area of interaction of falling compression shock from the cowl with the AIU lower wall boundary layer.

With the backpressure coefficient of d = 5.5, an extensive separation region appears in the expanding (diffuser) part of the channel and a transition from supersonic to subsonic flow occurs.

At backpressure coefficient d = 8.5, a flow similar to a Mach disk is being formed at the AIU inlet: a direct shock wave is located in the central part of the inlet, and on top (near the shell) and below (near the compression wedge) two λ-shaped shocks are formed.

With the backpressure further increase (d ≥ 9.25), the direct shock wave is shiftiing forward and locating prior to the shell, while the upper λ-shaped of shock waves disappears, and the lower one moves forward, increasing in size.

Keywords:

turbulence model, flat air intake, intake throttling, three-dimensional separation, λ-shaped shock wave, supersonic flow

References

  1. Herrmann C.D., Koschel W.W. Experimental investigation of the internal compression of a hypersonic intake. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (7-10 July 2002; Indianapolis, Indiana). Paper 2002-4130.
  2. ANSYS FLUENT 12.0 Theory Guide. URL: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
  3. Ansys Fluent Fluid Simulation Software. URL: https://www.ansys.com/products/fluids/ansys-fluent
  4. Spalart P.R. Trends in Turbulence Treatments. Fluids 2000 Conference and Exhibit (19-22 June 2000; Denver, CO, USA). Paper AIAA-2000-2306. DOI: 10.2514/6.2000-2306
  5. Vinogradov V.A., Mel'nikov Ya.A., Stepanov V.A. Uchenye Zapiski TsAGI, 2015, vol. XLVI, no. 2, pp. 26-40.
  6. Choudhury D. Introduction to the Renormalisation Group Method and Turbulence Modeling. Fluent Inc, Technical Memorandum TM-107, 1993.
  7. Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 1995, vol. 24, no. 3, pp. 227-238. DOI: 10.1016/0045-7930(94)00032-T
  8. Wilcox D.C. Multiscale model for turbulent flows. AIAA Journal, 1988, vol. 26, no. 11, pp. 1311-1320. DOI: 10.2514/3.10042
  9. Wilcox D.C. Turbulence Modeling For CFD. 3rd edition. DCW Industries. Inc., La Canada, California, USA, 1998, 522 p.
  10. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, vol. 32, no. 8, pp 1598-1605.
  11. Menter F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 2009, vol. 23, no. 4, pp. 305-316. DOI: 10.1080/10618560902773387
  12. Novogorodtsev E.V., Karpov E.V., Koltok N.G. Characteristics improvement of spatial fixed-geometry air intakes of external compression based on boundary layer control systems application. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 7-27. DOI: 10.34759/vst-2021-4-7-27
  13. Shcherbakov M.A., Yun A.A., Krylov B.A. A comparative analysis of turbulence models using Fastest-SD scientific code and ANSYS СFХ commercial software package. Aerospace MAI Journal, 2009, vol. 16, no. 5, pp. 116-122.
  14. Mileshin V.I., Semenkin V.G. Computational study of reynolds number effect on the typical first stage of a high-pressure compressor. Aerospace MAI Journal, 2018, vol. 25, no 2, pp. 86-98.
  15. Lyubimov D.A., Potekhina I.V. Materialy XIV Mezhdunarodnoi shkoly-seminara “Modeli i metody aerodinamiki”: Sbornik tezisov dokladov XIV Mezhdunarodnoi shkoly-seminara (04–13 June 2014; Evpatoriya). Moscow, MTsNMO, 2014, pp. 102-103.
  16. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Turbulence modeling in calculations of complex flows), St. Petersburg, Politekhnicheskii universitet, 2012, 88 p.
  17. Forsythe J.R., Squires K., Wurtzler K., Spalart P. Detached eddy simulation of fighter aircraft at high alpha. 40th AIAA Aerospace Sciences Meeting & Exhibit (14-17 January 2002; Reno, NV, USA). DOI: 10.2514/6.2002-591
  18. Strelets M. Detached eddy simulation of massively separated flows. 39th Aerospace Sciences Meeting and Exhibit (08-11 January 2001; Reno, NV, USA). DOI: 10.2514/6.2001-879
  19. Menter F.R. Stress-blended eddy simulation (SBES) – A new paradigm in hybrid RANS–LES modeling. In: Hoarau Y., Peng SH., Schwamborn D., Revell A. (eds) Progress in Hybrid RANS-LES Modelling (HRLM 2016). Springer, Cham. Vol 137, pp. 27-37. DOI: 10.1007/978-3-319-70031-1_3
  20. Oberkampf W.L., Trucano T.G. Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 2002, vol. 38, no. 3, pp. 209-272. DOI: 10.1016/S0376-0421(02)00005-2
  21. Roache P.J. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, vol. 29, pp. 123-160. DOI: 10.1146/annurev.fluid.29.1.123
  22. Roe P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1981, vol. 43, no. 2, pp. 357-322. DOI: 10.1016/0021-9991(81)90128-5
  23. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit (06-09 January 1992; Reno, NV, USA). DOI: 10.2514/6.1992-439
  24. Launder B.E., Shima N. Second-Moment Closure for the Near-Wall Sublayer: Development and Application. AIAA Journal, 1989, vol. 27, no. 10, pp. 1319-1325. DOI: 10.2514/3.10267.
  25. Korkegi R.H. A simple correlation for incipient turbulent boundary layer separation due to a skewed shock wave. AIAA Journal, 1973, vol. 22, no. 11, pp. 1578-1579.
  26. Zheltovodov A.A. Izvestiya RAN. Mekhanika zhidkosti i gaza, 1979, no. 3, pp. 42-50.
  27. Gurylev V.G., Trifonov A.K. Uchenye zapiski TsAGI. 1976, vol. VII, no. 1, pp. 130-138.
  28. Gurylev V.G., Trifonov A.K. Uchenye zapiski TsAGI. 1980, vol. ХI, no. 4, pp. 81-89.
  29. Gun'ko Yu.P., Mazhul' I.I. Teplofizika i aeromekhanika. 2015, vol. 22, no. 5, pp. 567-580.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI