Development and characteristics studying of the xenon and krypton operating SPD-70M thruster engineering model

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-2-106-115

Аuthors

Gnizdor R. Y.1, Pyatykh I. N.1*, Kaplin M. A.1**, Rumyantsev А. V.2***

1. Experimental Design Bureau “Fakel”, 181, Moskovsky av, Kaliningrad, 236001, Russia
2. Immanuel Kant Baltic Federal University, IKBFU, 14, A. Nevskogo str., Kaliningrad, 236041, Russia

*e-mail: phantom4400@yandex.ru
**e-mail: info@fakel-russia.com
***e-mail: albert37@list.ru

Abstract

EDB «Fakel» performs modernization of a SPT-70 type thrusters family, on which basis the TM-70 thrust modules (propulsion units), which were being employed at the «Yamal-100» and «Yamal-200» type spacecraft, and are in use at present at both «KazSat-2» and «EgyptSat» spacecraft.

The results of the research presented in the article were obtained during the EM1 engineering model of the SPT-70M thruster (hereinafter referred to as EM1) testing, which purpose consisted in studying the thrust and specific parameters, the thruster model lifetime characteristics and parameters of the plasma plume. These parameters studies were carried through in the course of the thruster model on Xenon and Krypton testing in the power range from 300 to 1500 W with discharging currents from 1.0 to 4.5 A and a voltage range from 150 to 500 V for various configurations of the discharge chamber channel exit part, which are simulating various lifetimes. These parameters studies were carried through in the course of the thruster model on Xenon and Krypton testing in the power range from 300 to 1500 W with discharging currents from 1.0 to 4.5 A and a voltage range from 150 to 500 V for various configurations of the discharge chamber channel exit part, which are simulating various lifetime durations.

Operation parameters fields of the thruster model, which may be employed while operation points parameters selection when operating both on Xenon and Krypton were determined by the results of the tests. Besides, the results of the EM1 direct and reduced endurance testing in the mode of the discharge power of 900 W (discharge current of 3.0 A) revealed the predictable total thrust impulse with Krypton would be no less than 1.0 MN, and 1.3 MN when operating on Xenon. The results of the tests on plasma plume parameters determining revealed that when operating in the mode with discharge power of 900 W (3.0 A/300 V) the divergence angle of the plasma plume while operation on Xenon was in the ranage from 35° to 37°, while with Krypton it was in the range from 48° to 50°.

Keywords:

electric propulsion, plasma, thruster, xenon, krypton, research, parameters, life tests, direct, reduce

References

  1. Lev D., Myers R.M., Lemmer K.M. et al. The Technological and Commercial Expansion of Electric Propulsion in the Past 24 Years. 35th International Electric Propulsion Conference (8-12 October 2017; Georgia Institute of Technology, Atlanta, USA). IEPC-2017-242.
  2. Semenenko D.A., Saevets P.A., Komarov A.A., Rumyantsev A.V. Characteristics analysis of stationary plasma thruster. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 173-180. DOI: 10.34759/vst-2020-4-173-180
  3. Gnizdor R., Markov A., Mitrofanova O., Semenenko D. The research of the modified SPT-70 thruster parameters and characteristics. 36th International Electric Propulsion Conference (15-20 September 2019; University of Vienna, Vienna, Austria). IEPC-2019-336.
  4. Saevets P., Semenenko D., Albertoni R., Scremin G. Development of a Long-Life Low-Power Hall Thruster. 35th International Electric Propulsion Conference (8-12 October 2017; Georgia Institute of Technology, Atlanta, USA). IEPC-2017-38.
  5. Williams G., Gilland J.H., Peterson P.Y. et al. Wear Testing of the HERMeS Thruster. 52nd AIAA/SAE/ASEE Joint Propulsion Conference (25-27 July 2016; Salt Lake City).
  6. Hofer R., Polk J., Mikellides I. et al. Development Status of the 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS). 35th International Electric Propulsion Conference (8-12 October 2017; Georgia Institute of Technology, Atlanta, USA). IEPC-2017-231.
  7. Polk J., Lobbiay R., Barriaultz A. et al. Inner Front Pole Cover Erosion in the 12.5 kW HERMeS Hall Thruster Over a Range of Operating Conditions. 35th International Electric Propulsion Conference (8-12 October 2017; Georgia Institute of Technology, Atlanta, USA). IEPC-2017-409.
  8. Gnizdor R., Komarov A., Pridannikov S., Savchenko K. Investigation of the thrust vector angle stability of the stationary plasma thrusters. 35th International Electric Propulsion Conference (8-12 October 2017; Georgia Institute of Technology, Atlanta, USA). IEPC-2017-41.
  9. Arkhipov B.A., Bober A.S., Gnizdor R.Y. et al. The results of 7000-hour SPT-100 life testing. 24th International Electric Propulsion Conference (1995; Moscow, Russia). IEPC-95-39.
  10. Latyshev L.A., Sokoloverov A.P., Khartov S.A., Chuyan R.K. Raketno-kosmicheskaya tekhnika. Raketnye dvigateli i energeticheskie ustanovki. Sbornik statei, Moscow, NIITP, 1991, pp. 71-78.
  11. Pagnon D., Pellerin S., Lasgorceix P., Legentil C. Measurement and modelling of the inside channel deposition of the sputtered ceramics on HET PPSX000-ML. A tool to predict the erosion along the thruster lifetime. 30th International Electric Propulsion Conference (17-20 September 2007; Florence, Italy). IEPC-2007-166.
  12. Lovstov A.S., Shagayda A.A., Gorshkov O.A. Semi-empirical method of Hall thruster lifetime prediction. 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (9-12 July 2006; Sacramento, California, USA). AIAA-2006-4661.
  13. Kim V., Abgaryan V., Kozlov V. et al. Development of the Accelerated Test Procedure for the SPT Discharge Chamber Wall Wearing During Long Thruster Operation. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003. AIAA-2003-5003.
  14. Khartov S.A. Raschet elementov dvigatel’noi ustanovki so statsionarnym plazmennym dvigatelem (Calculation of the elements of a propulsion system with a stationary plasma thruster), Moscow, MAI-PRINT, 2009, 84 p.
  15. Mitrofanova O., Saevets P., Gnizdor R. et al. Developed and perspective stationary plasma thrusters by EDB Fakel. 6th Space Propulsion Conference (14-18 May 2018; Seville, Spain).
  16. Herman D.A., Soulas G.C., Patterson M.J. NEXT Long-Duration Test Neutralizer Performance and Erosion Characteristics. 31st International Electric Propulsion Conference (20-24 September 2009; Ann Arbor, Michigan, USA). IEPC-2009-154.
  17. Allison D., Baldwin J., Scharfe M. Development of BEPPA: An Object-Oriented Parallel Code for Full 3-D Spacecraft Plume Analysis and Satellite Design. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (21-23 July 2008). AIAA-2008-4999.
  18. Corey R.L., Pidgeon D.J. Electric Propulsion at Space Systems/Loral. 31st International Electric Propulsion Conference (20-24 September 2009; Ann Arbor, Michigan, USA). IEPC-2009-270.
  19. Demaire A., Andersson B., Stanojev J., Rathsman P. New Electric Propulsion missions at SSC: The use of SMART-1 heritage and new lessons learnt. 31st International Electric Propulsion Conference (20-24 September 2009; Ann Arbor, Michigan, USA). IEPC-2009-053.
  20. Mota S., Resendes D.P., Cupido L. Plasma Reflectometry Applied to Plume Density Measurements of Electric Propulsion Thrusters. 31st International Electric Propulsion Conference (20-24 September 2009; Ann Arbor, Michigan, USA). IEPC-2009-041.
  21. Herman D.A., Soulas G.C., Patterson M.J. NEXT Long-Duration Test Plume and Wear Characteristics after 16,550 h of Operation and 337 kg of Xenon Processed. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (21-23 July 2008). AIAA-2008-4919.
  22. Mitrofanova O.A. Vliyanie velichiny i topologii magnitnogo polya na integral’nye kharakteristiki statsionarnykh plazmennykh dvigatelei (Impact of the magnetic field value and magnetic field topology on the integral characteristics of stationary plasma thrusters). Doctor’s thesis, Kaliningrad, 2015. — 147 p.
  23. Kim V.P., Gnizdor R.Yu., Grdlichko D.P. et al. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2018, no. 12, pp. 101-112. DOI: 10.1134/S0207352818120107
  24. Belan N.V., Kim V.P., Oranskii A.I., Tikhonov V.B. Statsionarnye plazmennye dvigateli (Stationary plasma thrusters), Kharkiv, KhAI, 1989, 315 p.
  25. Arkhipov A.S., Bishaev A.M. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2007, vol. 47, no 3, pp. 491-506.
  26. Arkhipov A.S., Bishaev A.M., Kim V.P. Simulation of rarefied plasma dynamics in the plume of the stationary plasma thruster. 2nd European Conference for Aerospace Sciences (1-7 July 2007; Brussels, Belgium).
  27. Arkhipov A.S., Kim V.P., Sidorenko E.K. Analysis of energy balance in the discharge of SPT using results of Its integral parameters and plume characteristics measurements. Aerospace MAI Journal, 2010, vol. 17, no. 5, pp. 121-129.
  28. Nakles M.R., Barry R.R., Larson C.W., Hargus W.A. A Plume Comparison of Xenon and Krypton Propellant on a 600 W Hall Thruster. 31st International Electric Propulsion Conference (20-24 September 2009; Ann Arbor, Michigan, USA). IEPC-2009-115.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI