Aeronautical and Space-Rocket Engineering
DOI: 10.34759/vst-2023-2-158-168
Аuthors
*, **, ***,JSC «TsENKI» – «NII PM», Moscow, Russia
*e-mail: V.Naumchenko@russian.space
**e-mail: P.Ilyushin@russian.space
***e-mail: D.Pikunov@russian.space
Abstract
The task of putting space rockets (space intended objects)into the target orbit is an extremely responsible add complicated task since exact delivery to the specified orbit with respect to the orbit parameters characteristic for each particular launching is required for the a satellite constellation deploying, or human scientific activities implementing in space onboard a spacecraft.
The perturbing factors impact at the stage of leading out affect adversely the object navigation by the satellite systems since it contributes to the distortion and loss of the navigation satellite signal. Autonomous object leading out has to be performed thereby. As long as this leading out is being performed autonomously by the inertial navigation systems (INS) readings, the total error of leading out would be read-out stipulated by the initial setting accuracy. The coordinates of the object being launched are known herewith with geodetic accuracy, and initial velocities are negligibly small. Thus, the initial error will be formed by the initial orientation error of the inertial measuring unit, including the triad of accelerometers and gyroscopes relative to a certain geographic basis.
The object of research in this work is the algorithm for initial setting of the platform class inertial navigation system for the objects of various classes and applications.
The purpose of the study consists in elaboration of the algorithm for the goniometrical initial setting of the platform inertial navigation system based on application of mathematical programing methods, and noises effect estimation of inertial sensors (gyroscopes and accelerometers) on response time and accuracy of the setting.
The authors proposed a fundamentally new approach to the algorithm elaboration for the platform INS initial setting to reduce its response time and enhance its accuracy. Simulation modeling of the proposed algorithm, as well estimation and analysis of the noises effect on its efficiency were performed.
Keywords:
gyro platform initial alignment, typical noise of inertial sensors, Allan variance, noise spectrum, initial alignment optimization algorithmReferences
- Andreev V.D. Teoriya inertsial’noi navigatsii. Avtonomnye sistemy (Theory of inertial navigation. Autonomous systems), Moscow, Nauka, 1966, 580 p.
- Aleshin B.S., Afonin A.A., Veremeenko K.K. et al. Orientatsiya i navigatsiya podvizhnykh ob«ektov: sovremennye navigatsionnye tekhnologii (Orientation and navigation of mobile objects: modern navigation technologies), Moscow, Fizmatlit, 2006, 424 p.
- Veremeenko K.K., Zheltov S.Yu., Kim N.V. et al. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aircraft), Moscow, Fizmatlit, 2009, 556 p.
- Lupanchuk V.Y. Optical surveillance system of unmanned aerial vehicle and a method of its stabilization. Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 184-200. DOI: 10.34759/vst-2022-1-184-200
- Sushchenko O.A., Goncharenko A.V. Design of Robust Systems for Stabilization of Unmanned Aerial Vehicle Equipment. International Journal of Aerospace Engineering, 2016. DOI: 10.1155/2016/6054081
- Hilkert J.M. Inertially stabilized platform technology «Concepts and principles». IEEE Control Systems Magazine, 2008, vol. 28, no. 1, pp. 26–46. DOI: 10.1109/MCS.2007.910256
- Egorov Yu.G., Smirnov S.V. Aviakosmicheskoe priborostroenie, 2013, no. 12, pp. 5-10.
- Bel’skii L.N., Vodicheva L.V., Parysheva Yu.V. Yubileinaya XXV Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (28-30 May 2018; Kontsern «TsNII «Elektropribor», Sankt-Peterburg, Rossiya). Sbornik materialov, 2018, pp. 260-263.
- Aleshin B.S., Tyuvin A.V., Chernomorskii A.I., Plekhanov V.E. Proektirovanie besplatformennykh inertsial’nykh navigatsionnykh sistem (Design of free-form inertial navigation systems), Moscow, MAI-Print, 2009, 396 p.
- Lipton H. Alignment of inertial systems on a moving base. National Aeronautics And Space Administration, Washington, D.C., 1967. — 184 p.
- Groves P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Second Edition. Artech House, 2013, 800 p.
- Salychev O.S. Verified approaches to inertial navigation, Moscow, BMSTU Press, 2017, 368 p.
- Veremeenko K.K., Zharkov M.V., Kuznetsov I.M. et al. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2020, no. 4, pp. 57-64.
- Veremeenko K.K., Savel’ev V.M. Izvestiya RAN. Teoriya i sistemy upravleniya, 2013. no. 1, pp. 111-121. DOI: 10.7868/S0002338812060145
- Mikhailov N.V. Avtonomnaya navigatsiya kosmicheskikh apparatov pri pomoshchi sputnikovykh radionavigatsionnykh sistem (Autonomous navigation of spacecraft using satellite radio navigation systems), St. Petersburg, Politekhnika, 2014, 362 p.
- Goncharov V.M., Zaitsev A.V., Lupanchuk V.Y. Coordinates measuring techniques improving of unmanned aerial vehicle in conditions of abnormality (distortion). Aerospace MAI Journal, 2020, vol. 27, no 4, pp. 206-221. DOI: 10.34759/vst-2020-4-206-221
- Bulochnikov D.Yu., Tashkov S.A, Shanjvkin R.R. NovaInfo.Ru, 2018, vol. 1, no. 91, pp. 41-46.
- Sushchenko O.A., Goncharenko A.V. Design of Robust Systems for Stabilization of Unmanned Aerial Vehicle Equipment. International Journal of Aerospace Engineering, 2016. DOI: 10.1155/2016/6054081
- Shchipitsyn A.G. Nauchnoe obozrenie. Tekhnicheskie nauki, 2016, no. 3, pp. 130-137.
- Balabaev O.S., Prokhortsov A.V. Izvestiya TulGU. Tekhnicheskie nauki, 2020, no. 11, pp. 389-395.
- IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. The Institute of Electrical and Electronics Engineers, Inc. New York, USA, 2003, 83 p.
- Litvin M.A., Malyugina A.A., Miller A.B. et al. Informatsionnye protsessy, 2014, vol. 14, no. 4, pp. 326–339.
- Siraya T.N. Giroskopiya i navigatsiya, 2020, vol. 28, no. 1(108), pp. 3-18. DOI: 10.17285/0869-7035.0027
- Li J., Fang J. Not Fully Overlapping Allan Variance and Total Variance for Inertial Sensor Stochastic Error Analysis. IEEE Transactions on Instrumentation and Measurement, 2013, vol. 62, no. 10, pp. 2659-2672. DOI: 10.1109/TIM.2013.2258769
- Matejèek M., Šostronek M. New experience with Allan variance: Noise analysis of accelerometers. Communication and Information Technologies (04-06 October 2017; Vysoke Tatry, Slovakia). DOI: 10.23919/KIT.2017.8109457
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |